CITY OF INDUSTRY ## CITY COUNCIL REGULAR MEETING AGENDA JUNE 25, 2015 9:00 AM Mayor Mark Radecki Mayor Pro Tem Cory Moss Council Member Roy Haber, III Council Member Jeff Parriott Council Member Newell Ruggles Location: City Council Chamber, 15651 East Stafford Street, City of Industry, California 91744 #### Addressing the City Council: - Agenda Items: Members of the public may address the City Council on any matter listed on the Agenda. In order to conduct a timely meeting, there will be a three-minute time limit per person for any matter listed on the Agenda. Anyone wishing to speak to the City Council is asked to complete a Speaker's Card which can be found at the back of the room and at the podium. The completed card should be submitted to the City Clerk prior to the Agenda item being called and prior to the individual being heard by the City Council. - Public Comments (Non-Agenda Items): Anyone wishing to address the City Council on an item <u>not</u> on the Agenda may do so during the "Public Comments" period. In order to conduct a timely meeting, there will be a three-minute time limit per person for the Public Comments portion of the Agenda. State law prohibits the City Council from taking action on a specific item unless it appears on the posted Agenda. Anyone wishing to speak to the City Council is asked to complete a Speaker's Card which can be found at the back of the room and at the podium. The completed card should be submitted to the City Clerk prior to the Agenda item being called by the City Clerk and prior to the individual being heard by the City Council. #### Americans with Disabilities Act: In compliance with the ADA, if you need special assistance to participate in any City meeting (including assisted listening devices), please contact the City Clerk's Office (626) 333-2211. Notification of at least 48 hours prior to the meeting will assist staff in assuring that reasonable arrangements can be made to provide accessibility to the meeting. #### Agendas and other writings: - In compliance with SB 343, staff reports and other public records permissible for disclosure related to open session agenda items are available at City Hall, 15625 East Stafford Street, Suite 100, City of Industry, California, at the office of the City Clerk during regular business hours, Monday through Friday 9:00 a.m. to 5:00 p.m. Any person with a question concerning any agenda item may call the City Clerk's Office at (626) 333-2211. - Call to Order - 2. Flag Salute - 3. Roll Call - 4. Public Comments 4.1 Presentation by Jason Farned, Public Information Officer of San Gabriel Valley Mosquito and Vector Control District. #### 5. **CONSENT CALENDAR** All matters listed under the Consent Calendar are considered to be routine and will be enacted by one vote. There will be no separate discussion of these items unless members of the City Council, the public, or staff request specific items be removed from the Consent Calendar for separate action. - 5.1 Consideration of Register of Demands. - RECOMMENDED ACTION: Approve the Register of Demands and authorize the appropriate City Officials to pay the bills. - 5.2 Consideration of the minutes of the May 28, 2015 regular meeting. - RECOMMENDED ACTION: Approve as submitted. - 5.3 Consideration of a Proposition A Assignment Agreement between the City of Industry and the City of San Gabriel. - RECOMMENDED ACTION: Approve the Agreement. - 5.4 Consideration of a Legal Services Agreement between the City of Industry and Casso & Sparks, LLP, to provide city attorney services. - RECOMMENDED ACTION: Approve the Agreement. #### 6. **CITY ENGINEER MATTERS** - 6.1 Consideration of submission of the Enhanced Watershed Management Program Plan to the Los Angeles Regional Water Quality Control Board and an Authorization to Submit Letter. - RECOMMENDED ACTION: Approve the submission of the Enhanced Watershed Management Program Plan, and authorize the City Engineer to sign the Authorization to Submit Letter. - 6.2 Consideration of a Covenant and Agreement to Hold Property as One Parcel affecting parcels located at 425 9th Avenue. - RECOMMENDED ACTION: Approve the Covenant and Agreement to Hold Property as One Parcel. - 6.3 Consideration of the Second Amended and Restated Water Supply Agreement between the City of Industry and La Puente Valley County Water District to facilitate the conveyance of treated water from 111 Hudson Avenue easterly through the Industry Waterworks system to Azusa Avenue and into the Rowland Water District potable water system. RECOMMENDED ACTION: Approve the Agreement. 7. Adjournment. Next regular meeting: Thursday, July 9, 2015 at 9:00 a.m. CITY COUNCIL **ITEM NO. 5.1** # CITY OF INDUSTRY AUTHORIZATION FOR PAYMENT OF BILLS CITY COUNCIL MEETING OF JUNE 25, 2015 #### **FUND RECAP:** | <u>FUND</u> | DESCRIPTION | DISBURSEMENTS | |-------------|--------------------------|---------------| | 100 | GENERAL FUND | 1,719,913.95 | | 120 | CAPITAL IMPROVEMENT FUND | 93,693.39 | | 140 | CITY DEBT SERVICE | 5,250.00 | | 161 | IPUC - ELECTRIC | 393,288.13 | | TOTAL | ALL FUNDS | 2,212,145.47 | #### BANK RECAP: | <u>BANK</u> | <u>NAME</u> | DISBURSEMENTS | |-------------|----------------------------------|---------------| | BOFA | BANK OF AMERICA - CKING ACCOUNTS | 388,651.85 | | REF | REFUSE - CKING ACCOUNT | 404,346.37 | | WFBK | WELLS FARGO- CKING ACCOUNT | 1,419,147.25 | | TOTAL A | LL BANKS | 2,212,145.47 | ## CITY OF INDUSTRY ### **BANK OF AMERICA** June 25, 2015 | Date | | | Payee Name | Check Amoun | |------------------------|---|-------------------------|--|--| | EC.CHK - City Electric | | | | | | 06/09/2015 | | | CITY OF INDUSTRY | \$298,651.85 | | Invoice | Date | Description | A | mount | | 06/09/15 | 06/09/2015 | TRANSFER FUNDS-ELECTRIC | \$298,6 | 51.85 | | 00/03/13 | 00/03/2010 | TOTAL ENTONDO-LELOTTIO | Ψ290,0 | | | | C.CHK - City Electric 06/09/2015 Invoice | 06/09/2015 Invoice Date | C.CHK - City Electric 06/09/2015 Invoice Date Description | C.CHK - City Electric 06/09/2015 Invoice Date Description CITY OF INDUSTRY A | #### CITYGEN.CHK - City General | 24265 | 06/15/2015 | | VOIDED-
PAPER JAM | | \$0.00 | |-------|------------|------------|-------------------------|-------------------------------|-------------| | 24266 | 06/09/2015 | | | CIVIC RECREATIONAL INDUSTRIAL | \$90,000.00 | | | Invoice | Date | Description | Amount | | | | 06/09/15 | 06/09/2015 | TRANSFER FUNDS-CRIA A/P | \$90,000.00 | | | Checks | Status | Count | Transaction Amount | |--------|--------|-------|--------------------| | | Total | 3 | \$388,651.85 | # CITY OF INDUSTRY WELLS FARGO REFUSE | Check | Date | | | Payee Name | Check Amount | |--------|------------------|------------|---------------------|-----------------------|--------------| | REFUSE | - Refuse Account | | | | | | 4154 | 06/08/2015 | | | GALE CONCOURSE, LLC | \$135.11 | | | Invoice | Date | Description | Amount | | | | 06/08/15 | 06/08/2015 | REFUND-ACCT #045630 | \$135.11 | | | 4155 | 06/08/2015 | | | FRISCO'S CARHOP DINER | \$4,211.26 | | | Invoice | Date | Description | Amount | | | | 06/08/15 | 06/08/2015 | REFUND-ACCT #084256 | \$4,211.26 | | | 4156 | 06/08/2015 | | | CITY OF INDUSTRY | \$400,000.00 | | | Invoice | Date | Description | Amount | | | | 06/08/15 | 06/08/2015 | INVESTMENT | \$400,000.00 | | | | | | | | | | Checks | Status | Count | Transaction Amount | |--------|--------|-------|--------------------| | | Total | 3 | \$404,346.37 | ## CITY OF INDUSTRY WELLS FARGO VOIDED CHECKS | Check | Date | | | Payee Name | Check Amount | |---------|---------------------------------|------------|------------------------|----------------------------|----------------| | CITY.WF | .CHK - City General Wells Fargo | | | | | | 61920 | 06/11/2015 | | 06/12/2015 | SATSUMA LANDSCAPE & MAINT. | (\$148,202.79) | | | Invoice | Date | Description | Amount | ; | | | 0515CHTA | 05/29/2015 | VOIDED-TO BE RE-ISSUED | (\$37,737.00) |) | | | 0515TACH | 05/29/2015 | VOIDED-TO BE RE-ISSUED | (\$110,465.79) | | | | | | | | | | Check | Status | Count | Transaction Amount | |-------|--------|-------|--------------------| | ×==== | Total | 1 | (\$148,202.79) | | Check | Date | | Payee Name | | Check Amoun | |----------|------------------------------|------------|---|-----------------|-------------| | CITY.WF. | CHK - City General Wells Far | go | | | | | 61951 | 06/09/2015 | | CITY OF INDU | STRY-PETTY CASH | \$779.22 | | | Invoice | Date | Description | Amount | | | | 06/03/15 | 06/03/2015 | REIMBURSE PETTY CASH | \$779.22 | | | 61952 | 06/10/2015 | | ADVANCED D | ISCOVERY, INC. | \$14,214.75 | | | Invoice | Date | Description | Amount | | | | B149539 | 05/31/2015 | PROF SVC-LITIGATION | \$14,214.75 | | | 61953 | 06/10/2015 | | AT & T | | \$8.81 | | | Invoice | Date | Description | Amount | | | | 2015-00001512 | 06/01/2015 | 06/01-06/30/15 SVC - CITY WHITE PAGES | \$8.81 | | | 61954 | 06/10/2015 | | AT & T | | \$225.00 | | | Invoice | Date | Description | Amount | | | | 8958880943 | 06/01/2015 | 06/01-06/30/15 SVC - METROLINK | \$225.00 | | | 61955 | 06/10/2015 | | GAS COMPAN | IY, THE | \$533.26 | | | Invoice | Date | Description | Amount | | | | 2015-00001508 | 06/04/2015 | 04/06-05/06/15 SVC - 2700 CHINO HILLS PKWY | \$60.06 | | | | 2015-00001509 | 06/04/2015 | 05/01-06/02/15 SVC - 710 NOGALES ST | \$17.61 | | | | 1135HATCH-JUN15 | 06/04/2015 | 05/01-06/02/15 SVC - 1135 HATCHER AVE | \$18.52 | | | | 2015-00001510 | 06/05/2015 | 05/01-06/01/15 SVC - 1 INDUSTRY HILLS PKWY UNIT | \$422.28 | | | | 2015-00001511 | 06/08/2015 | 05/05-06/04/15 SVC - 1 INDUSTRY HILLS PKWY | \$14.79 | | | 61956 | 06/10/2015 | | HORACIO CO | LMENARES | \$1,850.00 | | | Invoice | Date | Description | Amount | | | | 20150608COI | 06/08/2015 | VIDEO
FOR ELECTION DAY | \$800.00 | | | | 20150602COI-A | 06/02/2015 | VIDEO FOR ELECTION DAY | \$1,050.00 | | | 61957 | 06/10/2015 | | ROWLAND W. | ATER DISTRICT | \$1,625.85 | | | Invoice | Date | Description | Amount | | | Check | Date | | Payee Name | | Check Amount | |---------|-------------------------------|------------|---|--------------|--------------| | CITY.WF | .CHK - City General Wells Far | go | | | | | | 2015-00001513 | 05/27/2015 | 04/15-05/20/15 SVC - AZUSA AVE - CENTER | \$140,06 | | | | 2015-00001514 | 05/27/2015 | 04/15-05/20/15 SVC - AZUSA AVE 205597 | \$116.86 | | | | 2015-00001515 | 05/27/2015 | 04/14-05/20/15 SVC - 930 AZUSA AVE | \$439.59 | | | | 2015-00001516 | 05/27/2015 | 04/14-05/19/15 SVC - 17401 VALLEY BLVD | \$367.09 | | | | 2015-00001517 | 05/27/2015 | 04/14-05/25/15 SVC - 18044 ROWLAND-LAWSON | \$119.76 | | | | 2015-00001518 | 05/27/2015 | 04/14-05/20/15 SVC - HURLEY ST & VALLEY | \$442.49 | | | 61958 | 06/10/2015 | | SO CALIFORNIA ED | ISON COMPANY | \$9,023.90 | | | Invoice | Date | Description | Amount | | | | 2015-00001494 | 06/02/2015 | 05/01-06/01/15 SVC - 1 VALLEY/AZUSA | \$16.59 | | | | 5010ENG-JUN15 | 06/02/2015 | 04/29-05/29/15 SVC - 5010 ENGLISH | \$68.57 | | | | 205HUD-JUN15 | 06/02/2015 | 04/29-05/29/15 SVC - 205 N HUDSON AVE | \$539.93 | | | | 2015-00001495 | 06/05/2015 | 05/01-06/01/15 SVC - VARIOUS SITES | \$1,904.27 | | | | 2015-00001496 | 06/05/2015 | 05/05-06/04/15 SVC - 208 S WADDINGHAM WAY CP | \$134.26 | | | | 2015-00001497 | 06/06/2015 | 05/05-06/04/15 SVC - 15625 STAFFORD ST | \$4,589.62 | | | | 15660STAFF-JUN15 | 06/06/2015 | 04/29-05/29/15 SVC - 15660 STAFFORD ST | \$1,770.66 | | | 61959 | 06/10/2015 | | SUBURBAN WATER | SYSTEMS | \$418.93 | | | Invoice | Date | Description | Amount | | | | 180060571081 | 06/03/2015 | 05/05-06/02/15 SVC - NE CNR VALLEY/STIMS | \$418.93 | | | 61960 | 06/10/2015 | | VERIZON | | \$2,271.16 | | | Invoice | Date | Description | Amount | | | | 2015-00001498 | 05/19/2015 | 05/19-06/18/15 SVC - GENERATOR SITE-TELEMETRY | \$41.50 | | | | 2015-00001499 | 05/22/2015 | 05/22-06/21/15 SVC - GENERATOR SITE-TELEMETRY | \$57.19 | | | | 2015-00001500 | 05/25/2015 | 05/25-06/24/15 SVC - ELECTRIC MODEM | \$52.09 | | | | 2015-00001501 | 05/25/2015 | 05/25-06/24/15 SVC - ELECTRIC MODEM | \$61.67 | | | | 2015-00001502 | 05/28/2015 | 05/28-06/27/15 SVC - ELECTRIC MODEM | \$38.35 | | | | 2015-00001503 | 05/28/2015 | 05/28-06/27/15 SVC - ELECTRIC MODEM | \$61.67 | | | | 2015-00001504 | 05/28/2015 | 05/28-06/27/15 SVC - ELECTRIC MODEM | \$54.36 | | | | 2015-00001505 | 06/01/2015 | 06/01-06/30/15 SVC - CITY HALL FAXES | \$509.77 | | | | | | | | | | Check | Date | | Pay | /ee Name | Check Amoun | |-----------|------------------------------|------------|---------------------------------------|--------------------------|--------------| | CITY.WF.C | CHK - City General Wells Far | go | | | | | | 2015-00001506 | 06/01/2015 | 06/01-06/30/15 SVC - VARIOUS SITES | \$321.60 | | | | HATCHER-JUN15 | 06/01/2015 | 06/01-06/30/15 SVC - HATCHER WAREHOUS | SE \$51.23 | | | | TRESHERM-JUN15 | 06/01/2015 | 06/01-06/30/15 SVC - TRES HERMANOS | \$49.39 | | | | 2015-00001507 | 06/01/2015 | 06/01-06/30/15 SVC - VARIOUS SITES | \$972.34 | | | 61961 | 06/10/2015 | | VE | RIZON WIRELESS - LA | \$944.47 | | | Invoice | Date | Description | Amount | | | | 9746358501 | 05/26/2015 | 04/27-05/26/15 SVC - VARIOUS WIRELESS | \$944.47 | | | 61962 | 06/10/2015 | | VE | RIZON WIRELESS - LA | \$114.03 | | | Invoice | Date | Description | Amount | | | | 9746358502 | 05/26/2015 | 04/27-05/26/15 SVC - MOBILE BROADBAND | \$114.03 | | | 61963 | 06/10/2015 | | WE | X BANK | \$668.60 | | | Invoice | Date | Description | Amount | | | | 41054281 | 05/31/2015 | FUEL-CITY VEHICLES | \$668.60 | | | 61964 | 06/12/2015 | | SA | TSUMA LANDSCAPE & MAINT. | \$148,202.79 | | | Invoice | Date | Description | Amount | | | | 0515CHTA | 05/29/2015 | LANDSCAPE SVC-VARIOUS SITES | \$37,737.00 | | | | 0515TACH | 05/29/2015 | LANDSCAPE SVC-MAY 2015 | \$110,465.79 | | | 61965 | 06/16/2015 | | BR | OWN, CHRISTINA M. | \$5,378.12 | | | Invoice | Date | Description | Amount | | | | SPRING 2015 | 06/15/2015 | REIMBURSE TUITION/BOOKS | \$5,378.12 | | | 61966 | 06/16/2015 | | EXX | ON MOBIL | \$1,013.00 | | | Invoice | Date | Description | Amount | | | | 72006767506 | 06/08/2015 | FUEL-SECURITY VEHICLES | \$1,013.00 | | | 61967 | 06/16/2015 | | GA: | S COMPANY, THE | \$375.90 | | Check | Date | | Payee | Name | Check Amoun | |----------|-----------------------------|------------|---|--------------------------|-------------| | CITY.WF. | CHK - City General Wells Fa | rgo | | | | | | Invoice | Date | Description | Amount | | | | 2015-00001521 | 06/10/2015 | 5/7-6/8/15 SVC-15651 STAFFORD ST | \$91.36 | | | | 2015-00001522 | 06/10/2015 | 5/7-6/8/15 SVC-15633 RAUSCH RD | \$250.21 | | | | 2015-00001523 | 06/10/2015 | 5/7-6/8/15 SVC-15625 STAFFORD ST | \$16.71 | | | | 2015-00001524 | 06/10/2015 | 5/7-6/8/15 SVC-15651 STAFFORD ST APT #B | \$17.62 | | | 61968 | 06/16/2015 | | NOBL | E AMERICAS ENERGY | \$1,018.94 | | | Invoice | Date | Description | Amount | | | | 151600004529974 | 06/09/2015 | WHOLESALE GAS-MAY 2015 | \$1,018.94 | | | 61969 | 06/16/2015 | | PAETI | EC COMMUNICATIONS | \$733.46 | | | Invoice | Date | Description | Amount | | | | 58502723 | 06/10/2015 | PHONE SVC-JUN 2015 | \$733.46 | | | 61970 | 06/16/2015 | | RICOH USA, INC. | | \$3,448.87 | | | Invoice | Date | Description | Amount | | | | 46007066 | 06/06/2015 | COPIER LEASE-JUN 2015 | \$3,166.14 | | | | 46015926 | 06/06/2015 | COPIER LEASE-HR | \$282.73 | | | 61971 | 06/16/2015 | | SHELI | L | \$917.96 | | | Invoice | Date | Description | Amount | | | | 8000073489506 | 06/05/2015 | FUEL-CITY VEHICLES | \$917.96 | | | 61972 | 06/16/2015 | | SO CA | ALIFORNIA EDISON COMPANY | \$19,458.38 | | | Invoice | Date | Description | Amount | | | | 2015-00001525 | 06/09/2015 | 5/1-6/1/15 SVC-NOGALES ST/SAN JOSE AVE | \$615.49 | | | | 2015-00001526 | 06/10/2015 | 5/1-6/1/15 SVC-208 S WADDINGHAM WAY | \$17,269.20 | | | | 2015-00001527 | 06/09/2015 | 5/7-6/8/15 SVC-1135 HATCHER AVE | \$425.16 | | | | 2015-00001528 | 06/09/2015 | 5/7-6/8/15 SVC-1123 HATCHER AVE STE A | \$182.86 | | | | 2015-00001529 | 06/10/2015 | 5/7-6/8/15 SVC-VARIOUS | \$137.97 | | | | 2015-00001530 | 06/12/2015 | 4/15-6/9/15 SVC-VARIOUS SITES VALLEY BLVI | OU \$658.08 | | | Check | Date | | Payee Name | | Check Amoun | |----------|----------------------------|------------|---|----------------|-------------| | CITY.WF. | CHK - City General Wells F | argo | | | | | | 2015-00001531 | 06/11/2015 | 5/1-6/1/15 SVC-GALE AVE/L STREET | \$36.50 | | | | 2015-00001532 | 06/13/2015 | 5/13-6/12/15 SVC-490 7TH U | \$66.14 | | | | 2015-00001533 | 06/12/2015 | 5/12-6/11/15 SVC-575 BALDWIN PK AVE U | \$66.98 | | | 61973 | 06/16/2015 | | TELEPACIFIC COI | MMUNICATIONS | \$5,454.07 | | | Invoice | Date | Description | Amount | | | | 67624901-0 | 05/31/2015 | INTERNET SVC-METRO SOLAR/CITY HALL | \$5,454.07 | | | 61974 | 06/16/2015 | | VERIZON | | \$118.97 | | | Invoice | Date | Description | Amount | | | | 2015-00001519 | 06/04/2015 | 6/4-7/3/15 SVC-GENERATOR SITE TELEMETRY | \$57.25 | | | | 2015-00001520 | 06/04/2015 | 6/4-7/3/15 SVC-ELECTRIC MODEM | \$61.72 | | | 61975 | 06/16/2015 | | VERIZON BUSINESS | | \$114.47 | | | Invoice | Date | Description | Amount | | | | 06843360 | 06/10/2015 | 5/1-5/31/15 SVC-VARIOUS SITES | \$114.47 | | | 61976 | 06/16/2015 | | VERIZON BUSINESS | | \$32.45 | | | Invoice | Date | Description | Amount | | | | 06843359 | 06/10/2015 | 5/1-5/31/15 SVC-HATCHER WIRELESS SVC | \$32.45 | | | 61977 | 06/16/2015 | | WALNUT VALLEY | WATER DISTRICT | \$6,801.19 | | | Invoice | Date | Description | Amount | | | | 1994269 | 06/09/2015 | 5/1-6/1/15 SVC-IRR 820 FAIRWAY DR | \$127.75 | | | | 1994321 | 06/09/2015 | 5/1-6/1/15 SVC-LEMON AVE N OF CURRIER RD | \$72.96 | | | | 1994355 | 06/09/2015 | 5/1-6/1/15 SVC-BREA CYN RD & OLD RANCH RD | \$57.36 | | | | 1994371 | 06/09/2015 | 5/1-6/1/15 SVC-FERRERO 7 GRAND EAST RAMP | \$970.15 | | | | 1994389 | 06/09/2015 | 5/1-6/1/15 SVC-BAKER PKWY METER #1 | \$467.61 | | | | 1994390 | 06/09/2015 | 5/1-6/1/15 SVC-BAKER PKWY METER #2 | \$431.88 | | | | 1994396 | 06/09/2015 | 5/1-6/1/15 SVC-GRAND AVE XING-12'E OF BAKER | \$296.85 | | | | 1994397 | 06/09/2015 | 5/1-6/1/15 SVC-GRAND XING-1200'E OF BAKER | \$530.48 | | | Check | Date | | Payee Name | | Check Amoun | |----------|------------------------------|------------|---|-------------|-------------| | CITY.WF. | .CHK - City General Wells Fa | argo | | | | | | 1994399 | 06/09/2015 | 5/1-6/1/15 SVC-22002 VALLEY BLVD | \$512.88 | | | | 1994416 | 06/09/2015 | 5/1-6/1/15 SVC-21350 VALLEY-MEDIAN | \$83.88 | | | | 1994417 | 06/09/2015 | 5/1-6/1/15 SVC-GRAND CROSSING EAST-35'W BAKER | \$49.56 | | | | 1994418 | 06/09/2015 | 5/1-6/1/15 SVC-GRAND CROSSING WEST-25' E MAYO | \$83.88 | | | | 1994419 | 06/09/2015 | 5/1-6/1/15 SVC-BAKER PKWY & GRAND N/W CNR | \$1,829.71 | | | | 1994426 | 06/09/2015 | 5/1-6/1/15 SVC-E/S GRAND 215'S/O BAKER PKWY | \$165.19 | | | | 1994432 | 06/09/2015 | 5/1-6/1/15 SVC-BREA CYN 100' N OF RR TRKS | \$258.53 | | | | 1994433 | 06/09/2015 | 5/1-6/1/15 SVC-BREA CYN 60' N OF CURRIER | \$49,49 | | | | 1994435 | 06/09/2015 | 5/1-6/1/15 SVC-60 FWY INTERCHANGE FAIRWAY DR | \$44.81 | | | | 1994453 | 06/09/2015 | 5/1-6/1/15 SVC-END OF BAKER PKWY-TEMP | \$203.41 | | | | 1995134 | 06/10/2015 | 5/5-6/3/15 SVC-PUMP STN N/W CHERYL LN/MAYO | \$23.04 | | | | 1995154 | 06/10/2015 | 5/5-6/3/15 SVC-PUMP STN BREA CYN | \$487.34 | | | | 1995376 | 06/10/2015 | 5/5-6/3/15 SVC-NOGALES PUMP STN | \$54.43 | | | 61978 | 06/25/2015 | | ADVANCE EXERCISE EQUIPMENT | | \$8,999.51 | | | Invoice | Date | Description | Amount | | | | 21898 | 05/28/2015 | BALANCE-INSTALL
EXERCISE EQUIP AT CITY HALL | \$8,999.51 | | | 61979 | 06/25/2015 | | ALL AMERICAN TO | NERS, INC | \$595.00 | | | Invoice | Date | Description | Amount | | | | CONT5108 | 03/18/2015 | MAINT AGREEMENT-3/18/15 THRU 3/18/17 | \$595.00 | | | 61980 | 06/25/2015 | | ALL PRO PAINTING | G, INC. | \$13,795.00 | | | Invoice | Date | Description | Amount | | | | 6428 | 05/29/2015 | EXTERIOR PAINTING-FIRE STATION ON GALE AVE | \$13,795.00 | | | 61981 | 06/25/2015 | | ALVAKA NETWORK | (S | \$17,710.17 | | | Invoice | Date | Description | Amount | | | | 154626 | 05/29/2015 | ADD'L NET MAINT FOR MAY 2015 | \$4,930.00 | | | | 154753NP | 05/31/2015 | TRIP CHARGE | \$220.00 | | | | 154633 | 06/01/2015 | NETWORK MAINT-JUL 2015 | \$6,020.00 | | | Check | Date | | | Payee Name | Check Amoun | |----------|-----------------------------|------------|----------------------------------|-------------------------------|-------------| | CITY.WF. | .CHK - City General Wells F | argo | | | | | | 154661 | 06/01/2015 | NETWORK MAINT-JUL 2015 | \$6,540.17 | | | 61982 | 06/25/2015 | | | AQUA BACKFLOW & CHLORINATION | \$80.00 | | | Invoice | Date | Description | Amount | | | | 33554 | 09/30/2014 | B/F REPAIR-VARIOUS | \$80.00 | | | 61983 | 06/25/2015 | | | ARAMARK REFRESHMENT SERVICE, | \$119.50 | | | Invoice | Date | Description | Amount | | | | 1534359 | 06/05/2015 | COFFEE/OFFICE SUPPLIES | \$119.50 | | | 61984 | 06/25/2015 | | | AVANT-GARDE, INC | \$2,255.00 | | | Invoice | Date | Description | Amount | | | | 3708 | 05/20/2015 | PROGRAM MGMT-AZUSA AVE BRIDGE | \$2,255.00 | | | 61985 | 06/25/2015 | | BRYAN PRESS | | \$730.31 | | | Invoice | Date | Description | Amount | | | | 0072898 | 06/08/2015 | CODE VIOLATIONS FORMS | \$326.46 | | | | 0072922 | 06/08/2015 | COI-MAILING LABELS | \$135.71 | | | | 0072913 | 06/08/2015 | COI LETTERHEAD/SA MAILING LABELS | \$268.14 | | | 61986 | 06/25/2015 | | | CASC ENGINEERING AND | \$5,928.00 | | | Invoice | Date | Description | Amount | | | | 33518 | 04/30/2015 | NPDES ENG SVC-COI | \$5,781.00 | | | | 33513 | 04/30/2015 | NPDES ENG SVC-FOLLOW'S CAMP | \$147.00 | | | 61987 | 06/25/2015 | | | CITY OF INDUSTRY | \$987.64 | | | Invoice | Date | Description | Amount | | | | 2015-00000027 | 05/31/2015 | IH FUEL PUMP-SECURITY VEHICLES | \$987.64 | | | 61988 | 06/25/2015 | | | CITY OF INDUSTRY DISPOSAL CO. | \$2,362.08 | | | Invoice | Date | Description | Amount | | | | | | | | | | Check | Date | | F | Payee Name | Check Amoun | |----------|----------------------------|------------|-------------------------------------|-------------------------------|--------------| | CITY.WF. | CHK - City General Wells F | argo | | | | | | 2139801 | 05/31/2015 | MO SVC-CITY RESIDENCES | \$2,362.08 | | | 61989 | 06/25/2015 | | C | CITY OF INDUSTRY-MEDICAL | \$8,000.00 | | | Invoice | Date | Description | Amount | | | | REG 6/25/15 | 06/17/2015 | TRANSFER FUNDS-MEDICAL | \$8,000.00 | | | 61990 | 06/25/2015 | | C | CITY OF INDUSTRY-PAYROLL ACCT | \$60,000.00 | | | Invoice | Date | Description | Amount | | | | P/R 6/15/15 | 06/15/2015 | PAYROLL REIMBURSEMENT 6/15/15 | \$60,000.00 | | | 61991 | 06/25/2015 | | CITY OF INDUSTRY-REFUSE | | \$7,565.02 | | | Invoice | Date | Description | Amount | | | | 2138573 | 06/01/2015 | DISP SVC-CITY HALL | \$441.75 | | | | 2138574 | 06/01/2015 | DISP SVC-TRES HERMANOS | \$316.26 | | | | 2143415 | 05/31/2015 | DISP SVC-TONNER CYN | \$466.41 | | | | 2143414 | 05/31/2015 | DISP SVC-1123 HATCHER | \$1,595.79 | | | | 2139199 | 06/01/2015 | DISP SVC-CITY BUS STOPS | \$4,376.33 | | | | 2138835-A | 06/01/2015 | DISP SVC-205 HUDSON | \$184.24 | | | | 2138835-B | 06/01/2015 | DISP SVC-841 7TH AVE | \$184.24 | | | 61992 | 06/25/2015 | | C | NC ENGINEERING | \$166,444.36 | | | Invoice | Date | Description | Amount | | | | 072015 | 06/01/2015 | MEALS/WHEELS RENT- JUL 2015 | \$5,000.00 | | | | 43451 | 06/11/2015 | INDUSTRY 66KV ELEC SUBSTATION FAC | ILITY \$482.30 | | | | 43452 | 06/11/2015 | ON-CALL STREET MAINT PROGRAM | \$1,140.03 | | | | 43453 | 06/11/2015 | WALNUT DR SOUTH WIDENING | \$5,574.28 | | | | 43454 | 06/11/2015 | CLARK AVE WIDENING AND SIDEWALK | \$4,615.24 | | | | 43455 | 06/11/2015 | 2014-2015 SLURRY SEAL | \$5,072.63 | | | | 43456 | 06/11/2015 | GENERAL ENGINEERING SVC-CIP | \$33,805.68 | | | | 43457 | 06/11/2015 | GENERAL ENGINEERING SVC 5/25-6/7/15 | \$51,243.26 | | | | 43458 | 06/11/2015 | TONNER CYN PROPERTY | \$3,800.37 | | | Check | Date | | Payee Name | Check Am | |---------|--------------------------|------------|--|-------------| | ITY.WF. | CHK - City General Wells | Fargo | | | | | 43459 | 06/11/2015 | PUENTE VALLEY OPERABLE UNIT | \$941.28 | | | 43460 | 06/11/2015 | TRES HERMANOS GENERAL ENGINEERING | \$1,330.04 | | | 43461 | 06/11/2015 | CITY ADMIN OFFICES-15625 STAFFORD | \$2,349.76 | | | 43462 | 06/11/2015 | IMC BLDG-15651 STAFFORD | \$253.34 | | | 43463 | 06/11/2015 | HOMESTEAD MUSEUM MAINT | \$1,098.16 | | | 43464 | 06/11/2015 | RESURFACING-VARIOUS STREETS | \$4,706.40 | | | 43465 | 06/11/2015 | LOS ANGELES SUB QUIET ZONE | \$1,176.60 | | | 43466 | 06/11/2015 | OPERATION AND MAINT OF THE METRO PARKING | \$1,766.49 | | | 43467 | 06/11/2015 | PROP 1B STATE FUND ALLOCATIONS | \$162.71 | | | 43468 | 06/11/2015 | INDUSTRY HILLS-FUEL STATION MAINT | \$313.76 | | | 43469 | 06/11/2015 | PROPERTY MGMT - CITY OWNED PROPERTIES | \$2,423.08 | | | 43470 | 06/11/2015 | AZUSA AVE OVER VALLEY BLVD BRIDGE | \$280.37 | | | 43471 | 06/11/2015 | FISCAL YEAR BUDGET | \$1,392,31 | | | 43472 | 06/11/2015 | FOLLOW'S CAMP PROPERTY | \$1,103.99 | | | 43473 | 06/11/2015 | VARIOUS ASSIGNMENTS-SA TO THE JUDA | \$4,836.54 | | | 43474 | 06/11/2015 | COMMUTER RAIL STATION -METROLINK STN | \$470.64 | | | 43475 | 06/11/2015 | FOOTHILL TRANSIT PARKING STRUCTURE | \$1,870.37 | | | 43476 | 06/11/2015 | GALE AVE AND JELLICK AVE TRAFFIC SIGNAL | \$156.88 | | | 43477 | 06/11/2015 | CIVIC-FINANCIAL CENTER LANDSCAPING | \$4,784.84 | | | 43478 | 06/11/2015 | BICYCLE MASTER PLAN | \$1,266.70 | | | 43479 | 06/11/2015 | CITY MAINT YARD AT 1123 HATCHER | \$156.88 | | | 43480 | 06/11/2015 | ARENTH AVE RECONSTRUCTION | \$1,013.36 | | | 43481 | 06/11/2015 | CITY OF INDUSTRY MUNICIPAL CODE COMPLIANCE | \$470.64 | | | 43482 | 06/11/2015 | GENERAL ENGINEERING SVC-HWY MONITORING | \$4,325.86 | | | 43483 | 06/11/2015 | CITY OF INDUSTRY PAVEMENT MGMT SYSTEM | \$10,098.55 | | | 43484 | 06/11/2015 | FULLERTON RD GRADE SEPARATION | \$4,392.64 | | | 43485 | 06/11/2015 | ALAMEDA CORRIDOR EAST RELATED PROJECT | \$325.42 | | | 43486 | 06/11/2015 | FAIRWAY DR GRADE SEPARATION | \$1,688.05 | | | 43487 | 06/11/2015 | NOGALES GRADE SEPARATION | \$554.91 | | 993 | 06/25/2015 | | CORELOGIC INFOR | MATION \$19 | | Check | Date | | | Payee Name | Check Amoun | |----------|----------------------------|------------|----------------------------------|-----------------------|-------------| | CITY.WF. | CHK - City General Wells I | Fargo | | | | | | Invoice | Date | Description | Amount | | | | 81491964 | 05/31/2015 | GEOGRAPHIC PKG-MAY 2015 | \$192.50 | | | 61994 | 06/25/2015 | | | EASYLINK SERVICES | \$56.33 | | | Invoice | Date | Description | Amount | | | | 07634191506 | 06/02/2015 | FAX SVC-MAY 2015 | \$56.33 | | | 61995 | 06/25/2015 | | | ENCO UTILITY SERVICES | \$7,609.50 | | | Invoice | Date | Description | Amount | | | | 20-3-05-15 | 05/31/2015 | PROF SVC-MAY 2015 | \$2,500.00 | | | | 0113-0029MR | 06/08/2015 | METER READING-MAY 2015 | \$2,263.50 | | | | 0612-00036S | 06/08/2015 | METER SYSTEN MONITORING-MAY 2015 | \$2,846.00 | | | 61996 | 06/25/2015 | | | ENVIRONS, INC. | \$22,216.89 | | | Invoice | Date | Description | Amount | | | | 2802 | 05/13/2015 | LANDSCAPE PLANS-BIXBY DR | \$322.50 | | | | 2787 | 04/23/2015 | LANDSCAPE PLANS-FOLLOW'S CAMP | \$927.27 | | | | 2801 | 05/13/2015 | LANDCAPE PLANS-CLARK AVE | \$1,080.00 | | | | 2806 | 06/01/2015 | LANDCAPE PLANS-CIVIC CENTER | \$19,887.12 | | | 61997 | 06/25/2015 | | | FEDERAL EXPRESS CORP. | \$241.58 | | | Invoice | Date | Description | Amount | | | | 5-061-70872 | 06/12/2015 | MESSENGER SVC | \$241.58 | | | 61998 | 06/25/2015 | | | FRAZER, LLP | \$84,020.00 | | | Invoice | Date | Description | Amount | | | | 137992 | 05/31/2015 | COI-CONSULTING SVC FOR MAY 2015 | \$44,010.00 | | | | 138332 | 06/15/2015 | COI-ACCTG SVC 6/1-6/15/15 | \$40,010.00 | | | 61999 | 06/25/2015 | | | FUEL PROS, INC. | \$1,159.68 | | | Invoice | Date | Description | Amount | | | | | | | | | | Check | Date | | | Payee Name | Check Amoun | |----------|--------------------------------|------------|-----------------------------------|------------------------------|-------------| | CITY.WF. | CHK - City General Wells Fargo | | | | | | | 0000020821 | 04/29/2015 | INDUSTRY HILLS-FUEL STATION MAIN | Γ \$150.00 | | | | 0000020863 | 04/29/2015 | INDUSTRY HILLS-FUEL STATION MAINT | Г \$859.68 | | | | 0000020985 | 05/23/2015 | INDUSTRY HILLS-FUEL STATION MAINT | Г \$150.00 | | | 62000 | 06/25/2015 | | | G.M. SAGER CONSTRUCTION CO., | \$3,375.00 | | | Invoice | Date | Description | Amount | | | | 33821 | 05/14/2015 | REPAIR SEPTIC TANK-TONNER CYN | \$3,375.00 | | | 62001 | 06/25/2015 | | | GMS ELEVATOR SERVICES, INC | \$134.00 | | | Invoice | Date | Description | Amount | | | | 00078748 | 06/01/2015 | MO SVC-ELEVATOR | \$134.00 | | | 62002 | 06/25/2015 | | | GRAND CENTRAL RECYCLING & | \$457.08 | | | Invoice | Date | Description | Amount | | | | 2144030 | 05/31/2015 | SOLID WASTE-MAY 2015 | \$457.08 | | | 62003 | 06/25/2015 | | | INDUSTRY SECURITY SERVICES | \$33,176.92 | | | Invoice | Date | Description | Amount | | | | 14-14467 | 06/12/2015 | SECURITY SVC 6/5-6/11/15 | \$13,253.89 | | | | 14-14477 | 06/12/2015 | SECURITY SVC 6/5-6/11/15 | \$3,364.80 | | | | 14-14417 | 06/05/2015 | SECURITY SVC 5/29-6/4/15 | \$3,364.80 | | | | 14-14407 | 06/05/2015 | SECURITY SVC 5/29-6/4/15 | \$13,193.43 | | | 62004 | 06/25/2015 | | | INTERTIE | \$11,925.00 | | | Invoice | Date | Description | Amount
| | | | 1665 | 06/09/2015 | ENERGY CONSULTING-METRO SOLAR | \$11,925.00 | | | 62005 | 06/25/2015 | | | JANUS PEST MANAGEMENT | \$580.00 | | | Invoice | Date | Description | Amount | | | | 134414 | 06/01/2015 | SVC-HOMESTEAD | \$580.00 | | | Check | Date | | | Payee Name | Check Amoun | |----------|----------------------------|------------|---------------------------------|-----------------------------|--------------| | CITY.WF. | CHK - City General Wells I | Fargo | | | | | 62006 | 06/25/2015 | | | KLEINFELDER, INC. | \$9,133.75 | | | Invoice | Date | Description | Amount | | | | 001057688 | 04/26/2015 | CROSSROADS PKY SOUTH RECONST | RUCTION \$8,203.75 | | | | 001061161 | 05/27/2015 | NOGALES/FULLERTON RD GRADE SEF | PARATION \$930.00 | | | 62007 | 06/25/2015 | | | L A COUNTY DEPT OF PUBLIC | \$4,502.80 | | | Invoice | Date | Description | Amount | | | | IN150001156 | 06/04/2015 | PILOT ROUTINE MAINT | \$4,502.80 | | | 62008 | 06/25/2015 | | | L A COUNTY SHERIFF'S | \$667,606.07 | | | Invoice | Date | Description | Amount | | | | 154507NH | 06/05/2015 | SHERIFF CONTRACT-MAY 2015 | \$667,606.07 | | | 62009 | 06/25/2015 | | | LEAGUE OF CALIFORNIA CITIES | \$1,092.00 | | | Invoice | Date | Description | Amount | | | | 3074 | 06/05/2015 | MEMBERSHIP DUES 2015-2016 | \$1,092.00 | | | 62010 | 06/25/2015 | | | MARIPOSA LANDSCAPES, INC | \$10,300.00 | | | Invoice | Date | Description | Amount | | | | 68658 | 05/22/2015 | INSTALL BOULDERS-VALLEY/605 FWY | \$10,300.00 | | | 62011 | 06/25/2015 | | | MERRITT'S ACE HARDWARE | \$52.44 | | | Invoice | Date | Description | Amount | | | | 086352 | 06/10/2015 | MISC SUPPLIES | \$26.09 | | | | 086221 | 06/03/2015 | MISC SUPPLIES | \$26.35 | | | 62012 | 06/25/2015 | | | METHOD TECHNOLOGIES | \$420.00 | | | Invoice | Date | Description | Amount | | | | 20961 | 06/04/2015 | CITY WEBSITE UPDATE | \$420.00 | | | 62013 | 06/25/2015 | | | PARAGON MICRO INC | \$4,252.54 | | Check | Date | | Payee | Name | Check Amoun | |----------|----------------------------|------------|---------------------------------------|-------------------------|-------------| | CITY.WF. | CHK - City General Wells F | argo | | | | | | Invoice | Date | Description | Amount | | | | 617250 | 05/18/2015 | COMPUTER SUPPLIES | \$127.54 | | | | 618898 | 06/03/2015 | COMPUTER SERVICE-RENEWAL | \$4,125.00 | | | 62014 | 06/25/2015 | | PITNE | BOWES, INC. | \$103.75 | | | Invoice | Date | Description | Amount | | | | 8554990-JN15 | 06/13/2015 | POSTAGE MACHINE-JUN 2015 | \$103.75 | | | 62015 | 06/25/2015 | | PLACE | WORKS | \$18,195.85 | | | Invoice | Date | Description | Amount | | | | 56405 | 05/31/2015 | STAFF SERVICES | \$1,682.50 | | | | 56398 | 05/31/2015 | DONLON BUILDERS/15000 NELSON AVE BLDG | \$8,270.00 | | | | 56460 | 05/31/2015 | INDUSTRY CLIMATE ACTION PLAN | \$8,243.35 | | | 62016 | 06/25/2015 | | ProcureIT USA, LLC | | \$272.38 | | | Invoice | Date | Description | Amount | | | | PITI6093 | 05/28/2015 | COMPUTER SUPPLIES | \$272.38 | | | 62017 | 06/25/2015 | | RICKAI | BUS, LEWIS S & GRACE M | \$3,500.00 | | | Invoice | Date | Description | Amount | | | | JULY 2015 | 06/09/2015 | LEASE OF STORAGE SPACE | \$3,500.00 | | | 62018 | 06/25/2015 | | SAGE E | ENVIRONMENTAL GROUP | \$16,811.00 | | | Invoice | Date | Description | Amount | | | | 525 | 05/19/2015 | WALNUT DR SOUTH WIDENING | \$4,335.00 | | | | 526 | 06/03/2015 | BIO MONITORING SVC-TONNER CYN | \$12,476.00 | | | 62019 | 06/25/2015 | | SAN GA | ABRIEL VALLEY NEWSPAPER | \$1,958.54 | | | Invoice | Date | Description | Amount | | | | 0010675905 | 06/03/2015 | PUBLIC NOTICE-ORDINANCE #791 | \$237.70 | | | | | | | | | | Check | Date | | Payee Name | | Check Amount | |---------|---------------------------|------------|---|---------------|--------------| | CITY.WF | .CHK - City General Wells | Fargo | | | | | | 0010675916 | 06/03/2015 | RESTRICTIONS ON WATER USAGE | \$683.44 | | | | 0010680296 | 06/16/2015 | PUBLIC NOTICE-ORDINANCE #792 | \$396.40 | | | | 0010680275 | 06/16/2015 | PUBLIC NOTICE-ORDINANCE #791 | \$357.76 | | | 62020 | 06/25/2015 | | SCS ENERGY | | \$190.00 | | | Invoice | Date | Description | Amount | | | | 0255184 | 04/30/2015 | RECIPROCATING ENG-INDUSTRY HILLS | \$190.00 | | | 62021 | 06/25/2015 | | SCS FIELD SERV | ICES | \$33,296.11 | | | Invoice | Date | Description | Amount | | | | 0254188 | 04/30/2015 | MAINT LANDFILL GAS SYSTEM | \$13,752.50 | | | | 0254034 | 04/30/2015 | MAINT OF LANDFILL GAS SYSTEM | \$5,133.41 | | | | 0255933 | 05/31/2015 | IH-SCAQMD MONITORING-1ST QTR 2015 | \$876.20 | | | | 0255931 | 05/31/2015 | MAINT LANDFILL GAS SYSTEM | \$13,534.00 | | | 62022 | 06/25/2015 | | SENNA TREE COI | MPANY | \$2,500.00 | | | Invoice | Date | Description | Amount | | | | 25634 | 05/26/2015 | REMOVAL OF FALLEN OAK TREES-FOLLOW'S CAMP | \$2,500.00 | | | 62023 | 06/25/2015 | | SNOWDEN ELECT | TRIC COMPANY, | \$46,231.00 | | | Invoice | Date | Description | Amount | | | | 15-0226 | 05/26/2015 | MAINT SVC-METRO SOLAR | \$16,393.00 | | | | 15-0240 | 05/29/2015 | INSTALL NEW ELECTRICAL CABLING-WATER TANK | \$29,838.00 | | | 62024 | 06/25/2015 | | SO CAL INDUSTR | IES | \$84.90 | | | Invoice | Date | Description | Amount | | | | 184431 | 06/04/2015 | RR RENTAL-TONNER CYN | \$84.90 | | | 62025 | 06/25/2015 | | SOUTH COAST A. | Q.M.D. | \$9,307.57 | | | Invoice | Date | Description | Amount | | | | 2845000 | 06/02/2015 | FLAT FEE EMISSIONS-IND HILLS | \$121.44 | | | Check | Date | | | Payee Name | Check Amoun | |----------|--------------------------|------------|------------------------------------|----------------------------|-------------| | CITY.WF. | CHK - City General Wells | Fargo | | | | | | 2844008 | 06/02/2015 | LANDFILL GAS COLLECTIONS-IND HILL: | S \$9,186.13 | | | 62026 | 06/25/2015 | | | STAPLES BUSINESS ADVANTAGE | \$457.31 | | | Invoice | Date | Description | Amount | | | | 8034631912 | 05/30/2015 | OFFICE SUPPLIES | \$457.31 | | | 62027 | 06/25/2015 | | | STEPHEN G. WHITE, MAI | \$4,000.00 | | | Invoice | Date | Description | Amount | | | | 06/11/15 | 06/11/2015 | APPRAISAL SVC-PROPERTIES #23/49 | \$4,000.00 | | | 62028 | 06/25/2015 | | SUPERIOR COURT OF CALIFORNIA, | | \$3,045.50 | | | Invoice | Date | Description | Amount | | | | MAY 2015 | 06/15/2015 | PARKING CITATIONS REPORT-MAY 201 | 5 \$3,045.50 | | | 62029 | 06/25/2015 | | THE 20/20 NETWORK | | \$5,000.00 | | | Invoice | Date | Description | Amount | | | | 1483 | 05/31/2015 | MEDIA CONSULTING-MAY 2015 | \$5,000.00 | | | 62030 | 06/25/2015 | | | THOMSON REUTERS - WEST | \$109.00 | | | Invoice | Date | Description | Amount | | | | 832001421 | 06/04/2015 | PRODUCT CHARGES-CA ANNO CODES | \$109.00 | | | 62031 | 06/25/2015 | | | THRALL, RANCE | \$14,580.00 | | | Invoice | Date | Description | Amount | | | | JUNE 2015 | 06/09/2015 | MAINTENANCE SVC-JUN 2015 | \$14,580.00 | | | 62032 | 06/25/2015 | | | TRIMARK ASSOCIATES, INC. | \$1,726.67 | | | Invoice | Date | Description | Amount | | | | EB11005 | 06/01/2015 | MAINT SVC-METRO SOLAR | \$1,726.67 | | | 62033 | 06/25/2015 | | | TURBO DATA SYSTEMS, INC | \$406.94 | | Check | Date | | | | Pay | yee Name | Check Amount | |----------|---------------------------|------------|------------------------------------|------------|------------|-------------------------|--------------| | CITY.WF. | .CHK - City General Wells | Fargo | | | | | | | | Invoice | Date | Description | | | Amount | | | | 22868 | 05/31/2015 | CITATION PRO | CESSING-AP | R/MAY 2015 | \$406.94 | | | 62034 | 06/25/2015 | | U.S. BANK | | | \$5,250.00 | | | | Invoice | Date | Description Amo | | | Amount | | | | 3987027 | 05/22/2015 | COI ADMIN FEES-2005 SALES TAX BOND | | | \$2,750.00 | | | | 3983454 | 05/22/2015 | COI ADMIN FEES-2010 SALES TAX BOND | | | \$2,500.00 | | | 62035 | 06/25/2015 | | UNDERGROUND SERVICE ALERT OF | | | \$28.50 | | | | Invoice | Date | Description | | | Amount | | | | 520150151 | 06/01/2015 | DIG ALERTS | | | \$28.50 | | | 62036 | 06/25/2015 | | VANGUARD CLEANING SYSTEMS, | | \$925.00 | | | | | Invoice | Date | Description | | | Amount | | | | 5765 | 06/01/2015 | JANITORIAL SVC-JU N 2015 | | | \$925.00 | | | 62037 | 06/25/2015 | | | | WA | STE SYSTEMS TECHNOLOGY, | \$14,810.00 | | | Invoice | Date | Description | | | Amount | | | | COI-60115 | 06/01/2015 | COMMERCIAL | WASTE PROC | GRAM | \$14,810.00 | | | 62038 | 06/25/2015 | | | | WE | ATHERITE SERVICE | \$392.00 | | | Invoice | Date | Description | | | Amount | | | | L163086 | 06/06/2015 | A/C MAINT-IMC | | | \$392.00 | | | 62039 | 06/25/2015 | | | | WK | E, INC | \$345.80 | | | Invoice | Date | Description | | Amount | | | | | 11-A | 05/06/2015 | ENGINEERINGF | PLAN CHECK | SVC | \$345.80 | | | | | | Oleania | Status | Count | Towns Alice Accord | | | | | | Checks | Status | Count | Transaction Amount | | | | | | | Total | 89 | \$1,567,350.04 | | CITY COUNCIL **ITEM NO. 5.2** #### CALL TO ORDER The Regular Meeting of the City Council of the City of Industry, California, was called to order by Mayor Tim Spohn at 9:00 a.m. in the City of Industry Council Chamber, 15651 East Stafford Street, California. #### **FLAG SALUTE** The flag salute was led by Mayor Tim Spohn. #### **ROLL CALL** PRESENT: Tim Spohn, Mayor Roy Haber, Council Member Pat Marcellin, Council Member ABSENT: Jeff Parriott, Mayor Pro Tem John P. Ferrero, Council Member STAFF PRESENT: Kevin Radecki, City Manager; Michele Vadon, City Attorney; Cecelia Dunlap, Deputy City Clerk; John Ballas, City Engineer; and Brian James, Planning Director. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO GRANT MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO AN EXCUSED ABSENCE. MOTION 3-0, WITH MAYOR PROTEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. #### **PUBLIC COMMENTS** Mr. Steve Baric, an elections attorney, inquired with the City Council about a recently filed referendum and questioned why it was not on the May 28, 2015 City Council Agenda. City Attorney Vadon advised Mr.
Baric that the City Attorney's office was not handling the matter and the referendum was being handled by the law firm of Richards, Watson and Gershon. Los Angeles County Sheriff Jim McDonnell introduced himself to the City Council and indicated he is looking forward to working with the City of Industry. #### CONSENT CALENDAR MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN THAT THE RECOMMENDATIONS BE ACCEPTED FOR THE FOLLOWING ITEMS LISTED ON THE CONSENT CALENDAR. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. 1. CONSIDERATION OF REGISTER OF DEMANDS APPROVED THE REGISTER OF DEMANDS AND AUTHORIZED THE APPROPRIATE CITY OFFICIALS TO PAY THE BILLS. 2. CONSIDERATION OF ANNUAL BUDGET SUBMITTED BY THE INDUSTRY PROPERTY AND HOUSING MANAGEMENT AUTHORITY FOR FISCAL YEAR 2015-2016 APPROVED, RECEIVED AND FILED. 3. CONSIDERATION OF ANNUAL BUDGET SUBMITTED BY THE INDUSTRY PUBLIC UTILITIES COMMISSION FOR FISCAL YEAR 2015-2016 APPROVED, RECEIVED AND FILED. 4. CONSIDERATION OF ANNUAL BUDGET SUBMITTED BY THE INDUSTRY PUBLIC FACILITIES AUTHORITY FOR FISCAL YEAR 2015-2016 APPROVED, RECEIVED AND FILED. 5. CONSIDERATION TO AUTHORIZE THE PURCHASE OF MATERIALS FOR THE RELOCATION OF A 16-INCH WATERLINE IN CONJUNCTION WITH PHASE 1 OF THE PUENTE GRADE SEPARATION PROJECT, IN THE AMOUNT OF \$20,158.25 AUTHORIZED LA PUENTE VALLEY COUNTY WATER DISTRICT TO PURCHASE THE MATERIALS IN ACCORDANCE WITH THE MANAGEMENT AGREEMENT. 6. CONSIDERATION TO SOLICIT PROPOSALS FOR DESIGN SERVICES FOR THE REPAINTING OF THE AZUSA AVENUE BRIDGE OVER VALLEY BOULEVARD AND THE UNION PACIFIC RAILROAD WITH \$289,493.00 IN FEDERAL HIGHWAY ADMINISTRATION (FHWA) FUNDS APPROVED THE SOLICITATION OF PROPOSALS. 7. CONSIDERATION OF RESOLUTION NO. CC 2015-17 – A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, DELEGATING AUTHORITY TO THE CITY TREASURER AND ACTING CITY TREASURER TO INVEST CITY FUNDS. ADOPTED RESOLUTION NO. CC 2015-17. 8. CONSIDERATION TO AUTHORIZE THE SALE OF SAFE AND SANE FIREWORKS TO THE FOLLOWING APPLICANTS: FRIENDS OF INDUSTRY SHERIFF'S STATION, WORKMAN HIGH SCHOOL ATHLETIC BOOSTERS, BASSETT HIGH SCHOOL OLYMPIAN BOOSTER, WILSON HIGH SCHOOL ATHLETICS BOOSTERS, ROWLAND HIGH SCHOOL HUDDLE CLUB, LA PUENTE HIGH SCHOOL ATHLETICS, NOGALES HIGH SCHOOL REGIMENT BOOSTERS, LOS ALTOS HIGH SCHOOL QUARTERBACK CLUB, BISHOP AMAT MEMORIAL HIGH SCHOOL, LYLE OLSEN MEMORIAL FOUNDATION, WEST COVINA YOUTH PONY BASEBALL, SOUTHLAND CHRISTIAN HIGH SCHOOL, CORY LIDLE FOUNDATION, KNIGHTS OF COLUMBUS #6028, BASSET EDUCATION FOUNDATION, NORTH VIEW VIKINGS BASEBALL, PRAISE CHAPEL, LA PUENTE, A PLACE OF HOPE, KIWANIS CLUB OF HACIENDA HEIGHTS, SAN GABRIEL VALLEY YMCA. AUTHORIZED THE SALE OF SAFE AND SANE FIREWORKS SUBJECT TO THE REGULATIONS SET FORTH IN THE INDUSTRY MUNICIPAL CODE SECTION 15.28. PUBLIC HEARING REGARDING EMERGENCY WATER SHORTAGE CONDITIONS AND TO SET MANDATORY CONSERVATION MEASURES FOR THE CITY OF INDUSTRY WATERWORKS SYSTEM MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO OPEN THE PUBLIC HEARING. MOTION 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. Mr. Greg Galindo, General Manager of the La Puente Valley Water District, presented a report to the City Council. Mayor Spohn inquired if anyone wished to be heard on the matter. There were no comments. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO CLOSE THE PUBLIC HEARING. MOTION 3-0, WITH MAYOR PROTEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-09 - A RESOLUTION OF CITY COUNCIL OF THE CITY OF INDUSTRY DECLARING EMERGENCY WATER SHORTAGE CONDITIONS AND ADOPTING MANDATORY WATER CONSERVATION MEASURES CONSISTENT WITH THOSE IMPOSED BY THE STATE WATER RESOURCES CONTROL BOARD ON THE DELIVERY AND CONSUMPTION OF WATER FOR PUBLIC USE MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO ADOPT RESOLUTION NO. CC 2015-09. MOTION 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF ANNUAL BUDGET SUBMITTED BY THE CIVIC-RECREATIONAL-INDUSTRIAL AUTHORITY FOR FISCAL YEAR 2015-2016. City Manager Radecki presented a staff report to the City Council. MOTION BY COUNCIL MEMBER MARCELLIN, AND SECOND BY COUNCIL MEMBER HABER TO NOT APPROVE THE BUDGET, AND DIRECTED STAFF TO WORK WITH THE CIVIC-RECREATIONAL-INDUSTRIAL AUTHORITY BOARD TO STUDY VIABLE OPTIONS TO REDUCE THE BUDGET DEFICIT. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-10 – A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, ESTABLISHING THE 2015-2016 APPROPRIATIONS LIMITATION AND SELECTING THE GROWTH IN THE CALIFORNIA PER CAPITA INCOME AND COUNTY POPULATION GROWTH ADJUSTMENT FACTORS FOR THE CITY PURSUANT TO ARTICLE XIIIB OF THE CALIFORNIA CONSTITUTION City Manager Radecki presented a staff report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO ADOPT RESOLUTION NO. CC 2015-10. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-11 – A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, APPROVING A BUDGET FOR #### **THE FISCAL YEAR 2015-2016** Mr. Dean Yamagata from Frazer LLP, the City's contracted Finance Department, presented a report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO ADOPT RESOLUTION NO. CC 2015-11. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-12 - A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, ADOPTING A SALARY RANGE SCHEDULE FOR CITY EMPLOYEES AND OFFICERS City Manager Radecki presented a staff report to the City Council. MOTION BY COUNCIL MEMBER MARCELLIN, AND SECOND BY HABER TO ADOPT RESOLUTION NO. CC 2015-12. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-15 – A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, AUTHORIZING THE CREATION OF A CITY OPERATING RESERVE FUND, SPECIAL REVENUE OPERATING RESERVE, ENTERPRISE FUND OPERATING RESERVE, AND A CITY CAPITAL IMPROVEMENT RESERVE FUND AND AUTHORIZING CERTAIN APPROPRIATION TO VARIOUS FUNDS City Manager Radecki presented a staff report to the City Council. MOTION BY MARCELLIN, AND SECOND BY COUNCIL MEMBER HABER TO ADOPT RESOLUTION CC 2015-15. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF ORDINANCE NO. 792 - AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, AMENDING AND RESTATING MUNICIPAL CODE CHAPTER 13.16 PERTAINING TO STORMWATER RUNOFF AND URBAN RUNOFF POLLUTION CONTROL AND REPEALING CHAPTER 13.17 PERTAINING TO STANDARD URBAN STORMWATER MITIGATION PLAN IMPLEMENTATION (FIRST READING) City Engineer Ballas presented a staff report to the City Council. Mr. Josh Nelson, Senior Project Manager from CNC Engineering, also presented a report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO WAIVE FURTHER READING AND INTRODUCE ORDINANCE NO. 792. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-16 - A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, ADOPTING A GREEN STREET POLICY City Engineer Ballas presented a staff report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO ADOPT RESOLUTION NO. CC 2015-16. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF AN AGREEMENT BETWEEN THE LOS ANGELES GATEWAY REGION INTEGRATED REGIONAL WATER MANAGEMENT JOINT POWERS AUTHORITY AND THE CITY OF INDUSTRY FOR COST SHARING FOR THE INSTALLATION OF MONITORING EQUIPMENT AND MONITORING PURSUANT TO THE HARBOR TOXIC POLLUTANTS TMDL City Engineer Ballas presented a staff report to the City Council. MOTION BY COUNCIL MEMBER MARCELLIN, AND SECOND BY COUNCIL MEMBER HABER TO APPROVE THE AGREEMENT. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF A TRAFFIC ANALYSIS REPORT PREPARED FOR THE ALAMEDA CORRIDOR-EAST CONSTRUCTION AUTHORITY IDENTIFYING IMPACTS TO NOGALES STREET DURING THE CONCURRENT CLOSURE OF THE FAIRWAY DRIVE AND FULLERTON ROAD GRADE SEPARATION PROJECTS FOR THE PERIOD OF SEPTEMBER 2016 THROUGH JUNE 2018 City Engineer Ballas presented a staff report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO APPROVE THE TRAFFIC ANALYSIS AND RECOMMENDED MITIGATION MEASURES. MOTION CARRIED 3-0, WITH MAYOR PROTEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. # CONSIDERATION TO SOLICIT PROPOSALS FOR PROFESSIONAL SERVICES RELATED TO THE CREATION OF QUIET ZONES AT VARIOUS LOCATIONS ALONG THE UNION PACIFIC RAILROAD City Engineer Ballas presented a staff report to the City Council. City Engineer Ballas indicated that the City received correspondence from Mr. Don C. Moss, Avocado Heights Community Advocate, to include working cooperatively with Los Angeles County for two additional quiet zones. The correspondence was distributed to the City Council, and a copy of the correspondence is on file with the City Clerk's office. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO APPROVE THE SOLICITATION OF PROPOSALS AND DIRECT STAFF TO CONTACT THE COUNTY OF LOS ANGELES FOR THEIR COOPERATION TO INCLUDE TWO ADDITIONAL QUIET ZONES AT VINELAND AVENUE AND TEMPLE AVENUE GRADE CROSSINGS WHICH ARE PARTIALLY LOCATED IN THE UNINCORPORATED AREA OF LOS ANGELES COUNTY. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF DEVELOPMENT PLAN APPLICATION NO. 14-9 SUBMITTED BY QUINN DEVELOPMENT, LLC TO CONSTRUCT AN 80,000 SQUARE
FOOT INDUSTRIAL BUILDING LOCATED AT 125 ORANGE AVENUE Senior Planner Helling presented a staff report to the City Council. CONSIDERATION OF RESOLUTION NO. CC 2015-13 - A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, ADOPTING THE MITIGATED NEGATIVE DECLARATION AND MITIGATION MONITORING AND REPORTING PROGRAM PREPARED IN CONJUNCTION WITH DEVELOPMENT PLAN NO. 14-9 TO ALLOW THE CONSTRUCTION OF AN 80,000 SQUARE FOOT INDUSTRIAL BUILDING LOCATED AT 125 ORANGE AVENUE IN THE CITY OF INDUSTRY, WITHIN THE "M"-INDUSTRIAL ZONE, AND MAKING FINDINGS IN SUPPORT THEREOF MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO ADOPT RESOLUTION NO. CC 2015 - 13. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF RESOLUTION NO. CC 2015-14 - A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, ADOPTING DEVELOPMENT PLAN NO. 14-9 TO ALLOW THE CONSTRUCTION OF AN 80,000 SQUARE FOOT INDUSTRIAL BUILDING LOCATED AT 125 ORANGE AVENUE IN THE CITY OF INDUSTRY, WITHIN THE "M-INDUSTRIAL ZONE, AND MAKING FINDINGS IN SUPPORT THEREOF MOTION BY COUNCIL MEMBER MARCELLIN, AND SECOND BY COUNCIL HABER TO ADOPT RESOLUTION NO. CC 2015 -14. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF DEVELOPMENT PLAN APPLICATION 15-8 SUBMITTED BY ART WEISS, INC. TO IMPROVE AN EXISTING SITE AND BUILDING LOCATED AT 15130 NELSON AVENUE Planning Director James presented a staff report to the City Council. MOTION BY COUNCIL MEMBER HABER, AND SECOND BY COUNCIL MEMBER MARCELLIN TO APPROVE DEVELOPMENT PLAN NO. 15-8 SUBMITTED BY ART WEISS, INC. BASED ON THE FINDINGS AND STANDARD REQUIREMENTS AND CONDITIONS. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. CONSIDERATION OF ORDINANCE NO. 791 - AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF INDUSTRY, CALIFORNIA, REPEALING CHAPTER 9.26 (ELECTRONIC GAMES AND DEVICES) OF TITLE 9 (PUBLIC PEACE, MORALS AND WELFARE) OF THE INDUSTRY MUNICIPAL CODE (FIRST READING) Planning Director James presented a staff report to the City Council. MOTION BY COUNCIL MEMBER MARCELLIN, AND SECOND BY COUNCIL MEMBER HABER TO WAIVE FURTHER READING AND INTRODUCE ORDINANCE NO. 791. MOTION CARRIED 3-0, WITH MAYOR PRO TEM PARRIOTT AND COUNCIL MEMBER FERRERO ABSENT. Mayor Spohn indicated the City Council would take a 10 minute recess. Mr. Stephen Larson of Arent Fox LLP, addressed the City Council, indicating a complaint had not been served against his clients, and strongly advised the City Council to reconsider serving the complaint against the Perezes. The City Council recessed at 9:50 a.m. Mayor Spohn reconvened the meeting at 10:00 a.m. All members of the City Council were present, except Mayor Pro Tem Parriott and Council Member Ferrero, who were absent. #### **CLOSED SESSION** Deputy City Clerk Dunlap announced there was a need for Closed Session as follows: - A CONFERENCE WITH LEGAL COUNSEL ANTICIPATED LITIGATION Significant exposure to litigation pursuant to Government Code Section 54956.9(d)(2): Five Potential Cases. - B CONFERENCE WITH LEGAL COUNSEL ANTICIPATED LITIGATION Initiation of litigation pursuant to Government Code Section 54956.9(d)(4): One Case. There were no public comments on the Closed Session items. Mayor Spohn recessed the meeting into Closed Session at 10:01 a.m. #### RECONVENE CITY COUNCIL MEETING Mayor Spohn reconvened the meeting at 10:36 a.m. All members of the City Council were present, except for Mayor Pro Tem Parriott and Council Member Ferrero, who were absent. With regard to Closed Session item A, Case One, the City Council took no reportable action. With regard to Closed Session item A, Case Two, the City Council took no reportable With regard to Closed Session item A, Case Three, the City Council took no reportable action. With regard to Closed Session item A, Case Four, the City Council took no reportable action. With regard to Closed Session item A, Case Five, the City Council took no reportable action. City Attorney Vadon stated there was no discussion for Closed Session item B. | ADJOURNMENT | | |--|------------------------| | There being no further business, the City Coun | cil adjourned. | | | MARK D. RADECKI, MAYOR | | CECELIA DUNLAP, | | **DEPUTY CITY CLERK** CITY COUNCIL **ITEM NO. 5.3** # CITY OF INDUSTRY June 23, 2015 Mayor & City Council Attached please find Proposition "A" Fund Trade Agreement with the City San Gabriel. Staff recommends that you approve this Agreement for Proposition "A" Local Return Fund exchange. Sincerely, Phyllis Tucker City Treasurer Encl.-1 ### PROPOSITION A ASSIGNMENT AGREEMENT This Proposition A Assignment Agreement ("Agreement") is made and entered into this 2nd day of June, 2015, by the City of San Gabriel, California and the 25th day of June, 2015 by the City of Industry, California with respect to the following facts: - A. The City of Industry is participating in the construction of grade separation improvements at Fairway Drive and Fullerton Road through betterment agreements with the Alameda Corridor-East Construction Authority "ACE". The City desires additional Proposition A Local Return funds to assist in these two grade separation projects and any other Metro approved Proposition A expenditures. - B. The City of San Gabriel has an accumulation of uncommitted Proposition A Local Return funds which could be made available to the City of Industry to assist in providing the project described in Paragraph A of this Agreement. In exchange for the assignment by the City of Industry of the amount of its general funds indicated in Section 1 below, the City of San Gabriel is willing to assign uncommitted Proposition A Local Return funds to the City of Industry for the purpose identified in Paragraph A. Now, therefore, in consideration of the mutual benefits to be derived by the parties and of the promises herein contained, it is mutually agreed as follows: - 1. <u>Exchange</u>. The City of San Gabriel agrees to assign \$570,000 of its Fiscal Year 2013-2014 and \$630,000 of its Fiscal Year 2014-2015 Proposition A Local Return Funding authority to the City of Industry. In return, the City of Industry agrees to assign \$900,000 in General Funds to the City of San Gabriel. - Consideration. The City of San Gabriel shall assign the agreed upon Proposition A Local Return funds to the City of Industry in one lump sum payment. The City of Industry shall assign the agreed upon general funds to the City of San Gabriel in one lump sum payment. The lump sum payment shall be due and payable no later than June 30, 2015. - 3. <u>Term.</u> This Agreement is effective on the date above written and for such time as is necessary for both parties to complete their mutual obligations under this Agreement. - 4. <u>Termination</u>. Termination of this Agreement may be made by either party before the date of approval of the project description covering the funds in question by the Metropolitan Transportation Authority, so long as written notice of intent to terminate is given to the other party at least five (5) days prior to the termination. - 5. <u>Notices</u>. Notices shall be given pursuant to this Agreement by personal service on the party to be notified, or by written notice upon such party deposited in the custody of the United States Postal Service addressed as follows: - a. Thomas C. Marston, Finance Director City of San Gabriel 425 South Mission Drive San Gabriel, California 91776 - b. Phyllis Tucker, City Treasurer City of Industry 15625 E. Stafford St., Suite 100 City of Industry, CA 91744-0366 Fax: (626) 961-6795 # 6. Assurances a. The City of Industry shall use the assigned Proposition A Local Return Funds only for the purpose of providing the project discussed in Paragraph A of the Agreement and within the time limits specified in Metropolitan Transportation Authority's Proposition A Local Return Program Guidelines. IN WITNESS WHEREOF, the parties hereto have caused this Assignment Agreement to be executed by their respective officers, duly authorized, on the day and year written above. | CITY OF SAN GABRIEL | CITY OF INDUSTRY | | | |---|--|--|--| | Jason Pu, Mayor | By
WMXSØØNKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | | | Attest: | | | | | Eleanor K. Andreus Eleanor K. Andrews, City Clerk | Cecelia Dunlap, Deputy City Clerk | | | | Approved as to Form: | oosona barnap, bopat, only one | | | | Robert L. Kress, City Attorney | MICKEREXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | | | | James Casso, | | | CITY COUNCIL **ITEM NO. 5.4** James M. Casso Principal [casso@cassosparks.com June 19, 2015 The Honorable Mark Radecki & Members of the City Council City of Industry 15625 E. Stafford Street, Suite 100 Industry, CA 91744 RE: Engagement of Legal Services - Casso & Sparks, LLP Dear Mayor Radecki & Members of the City Council: Thank you for retaining Casso & Sparks, LLP., to serve as the City Attorney of the City of Industry, and as General Counsel to the Successor Agency to the Industry Urban Development Agency, Civic Recreational Industrial Authority, Industry Development Authority, Industry Housing & Property Management Authority, Industry Public Facilities Authority and the Industry Public Utilities Commission (collectively "the City"), effective as of June 10, 2015. We appreciate the opportunity to serve as your legal counsel and look forward to working with you. This letter sets forth our agreement concerning the legal services we will provide and our fee arrangements for those services. Please read this entire agreement before signing and returning it to us. - 1. Scope of Engagement. We shall provide advice, consultation, and representation in all matters of municipal affairs. General legal services include attendance at regular and special meetings of the City Council,
Successor Agency, Planning Commission, Civic Recreational Industrial Authority, Industry Development Authority, Industry Housing & Property Management Authority, Industry Public Facilities Authority and the Industry Public Utilities Commission; daily advice as requested by the City Council, City Manager, and authorized staff; preparation and/or review of resolutions, agreements, ordinances, and other documents; general matters related to municipal elections; general labor and employment advice; and preparation of legal opinions. We will also provide legal services for additional matters that you request of us, provided we agree to perform that additional work. A letter confirming such additional work shall bring such work within the scope of this agreement. - 2. **Fees and Personnel.** As compensation for our services to the City, we propose a monthly retainer of Forty-Five Thousand Dollars (\$45,000.00) for general legal services. For the month of June 2015, the rate will be prorated to Thirty Thousand Dollars (\$30,000.00). For additional services, other than general legal services, including preparation, prosecution and defense of litigation, including the representation of City officials and employees, as appropriate Mayor Radecki & Council members City of Industry Page 2 and necessary; representation at administrative and regulatory hearings; advice regarding specialized employment issues; advice regarding investigations by outside agencies; personnel disciplinary matters; construction disputes; property acquisition or disposal; non-routine and/or specialized matters such as annexations; and other specialized legal services rendered by our attorneys, the City shall be billed \$325.00 per hour. As compensation for our services to the Successor Agency, Civic Recreational Industrial Authority, Industry Development Authority, Industry Housing & Property Management Authority, Industry Public Facilities Authority and the Industry Public Utilities Commission, our hourly rate is \$350.00. Any property acquisition or disposal, including eminent domain proceedings, and specialized legal services, shall be billed at \$375.00 per hour. Attendance at the meetings of each of these bodies is included in the retainer set forth above. For those legal services for which the City can be reimbursed by third parties, either pursuant to City policy, by statutory authority or agreement, we will charge the City \$475.00 per hour. In the event the rates are not reimbursed by a third party, the City shall be charged the applicable rate, provided herein, for the services rendered. If paralegals are assigned to work on your matter, the then current hourly rates of those individuals, but not more than \$150.00 per hour, will be utilized. This agreement retains the legal services of our law firm and not of a particular attorney. Hourly rates are subject to reasonable change, usually at the beginning of each year. For services as Issuer's Counsel, we shall charge the issuing agency of the City .02% of the total amount of the bonds issued. The above-mentioned rates shall be adjusted at the beginning of each fiscal year, commencing July 1, 2016, pursuant to the Consumer Price Index published by the U.S. Department of Labor, Bureau of Labor Statistics as of December of the prior calendar year for the Los Angeles-Long Beach-Anaheim Metropolitan Statistical Area average, all items, not seasonally adjusted, rounded up to the nearest five dollars (\$5.00) per hour, however, such adjustment shall be no less than 2.5% per year. - 3. **Disbursements and Expenses**. In addition to hourly fees, we may incur out-of-pocket expenses related to your representation. Our Billing Information, which sets forth the details of our disbursement and expense policy, is attached as Attachment 1. - 4. **Billing and Payment Responsibilities**. We will send monthly statements which are due within 30 days of receipt. If you have any questions about an invoice, please promptly telephone or write to me so that we may discuss these matters. Our Fees (Section 2) and Billing Information sets forth the details of our fee and billing policy. - 5. Termination of Services. You may terminate our services at any time by written notice. After receiving such notice, we will cease providing services. We will cooperate with you in the orderly transfer of all related files and records to your new counsel. Mayor Radecki & Council members City of Industry Page 3 We may terminate our services at any time with your consent or for good cause. Good cause exists if (a) any statement is not paid within 60 days of its date; (b) you fail to meet any other obligation under this agreement and continue in that failure for 15 days after we send written notice to you; (c) you have misrepresented or failed to disclose material facts to us, refused to cooperate with us, refused to follow our advice on a material matter, or otherwise made our representation unreasonably difficult; or (d) any other circumstance exists in which ethical rules of the legal profession mandate or permit termination, including situations where a conflict of interest arises. If we terminate our services, you agree to execute a substitution of attorneys promptly and otherwise cooperate in effecting that termination. Termination of our services, whether by you or by us, will not relieve the obligation to pay for services rendered and costs incurred before our services formally ceased. - 6. **Insurance.** Pursuant to California Business & Professions Code Section 6148(a), we maintain professional errors and omissions insurance in an amount not less than \$1,000,000 per occurrence; and \$2,000,000 aggregate, which insurance may not be canceled or reduced in required limits of liability unless at least ten days advance written notice be given to you. - 7. No Guarantee of Outcome. Any comments made by us about the potential outcome of this matter are expressions of opinion only and are not guarantees or promises about any outcome or results. - 8. **Governing Law; Venue.** This agreement shall be governed by and construed in accordance with the laws of the State of California without regard to principles of conflicts of laws. Any action to enforce or interpret this Agreement shall be filed in the Superior Court of Los Angeles County, California or in the Federal District Court for the Central District of California. - 9. Entire Agreement; Full Understanding; Modifications in Writing. This letter contains our entire agreement about our representation. Any modifications or additions to this letter agreement must be made in writing. - 10. **Joint Representation.** Our firm may engage certain legal specialists under an of counsel agreement. Because these individuals are deemed independent contractors under the applicable provisions of the tax laws and not employees of the firm, it is necessary that you consent to dual representation by the firm and the specialist in the event the matter which you have engaged us to handle requires the use of that specialist. This arrangement has no effect whatsoever on the cost of your legal services, rather it is an ethical requirement that we disclose this fact and that you consent. You are consenting by signing this letter. - 11. Conflicts. Our firm represents many public agencies in California, including numerous cities, redevelopment agencies, special districts, counties and other public entities, and we are accepting new engagements all the time. It is virtually inevitable that we will work on projects from other clients having different governmental or political objectives, beliefs or views from the City In view of the fact that the City is a public entity this letter confirms that the services which we are rendering to you are limited in scope and for the benefit of the City, only. Casso & Sparks performs a variety of professional services for its clients and it is possible that we will represent public agency Mayor Radecki & Council members City of Industry Page 4 clients which are adverse to you on other matters. To avoid potential problems, you agree that you expressly waive any actual or potential conflicts that might arise from such representation, that you will not attempt to disqualify Casso & Sparks on such matters, and that our firm is free to represent its clients on such matters. By signing this letter and returning it to us, you acknowledge that we have discussed these matters and you confirm that the City does not object to our representation of clients on matters where their legal, governmental or political objectives and/or positions may be different from or adverse to those of the City, and that the City waives any conflict of interests with respect to our representation of such clients with differing legal, governmental or political interests. You further confirm that the City will not assert any conflict of interest concerning such representation or attempt to disqualify this firm from representing such clients notwithstanding such adversity. While you would certainly be free to terminate our relationship, you agree that this firm nonetheless would be free to represent such clients even on those matters which you consider adverse, and that you waive any conflict of interest in connection therewith. Needless to say, these acknowledgments do not permit our firm to represent another client in opposing the specific project for which you engage us without your specific written consent. You may wish, and we encourage you, to consult legal counsel regarding the effect of this conflict waiver. | of our respective responsibilities, please
your earliest convenience. Enclosed is a | etter carefully and, if it is consistent with your understandin so indicate by returning a signed copy of this letter to me an additional copy of this letter which you should retain for allowing us the opportunity to serve as your lawyers. |
--|---| | Very truly yours, | | | James M. Casso | | | James M. Casso | | | Enclosures: Attachment 1 | | | cc: Kevin Radecki, City Manager | | | | ons for the legal services of Casso & Sparks as set forth reement hereby represents and warrants his authority to do y and validly conferred | | CITY OF INDUSTRY | ATTEST: | | Ву; | Ву: | | Mark Radecki, Mayor | Cecilia Dunlap, Deputy City Clerk | ### ATTACHMENT 1 ### CASSO & SPARKS # STATEMENT OF FEE AND BILLING INFORMATION The following is a general description of our fee and billing policies. These general policies may be modified by the specific engagement letter or agreement to which this summary is attached. Billing and Payment Procedures. Unless other arrangements are made at the time of the engagement, invoices will be sent monthly. Invoices for outside services exceeding \$100.00 may be billed separately. Occasionally, however, we may defer billing for a given month or months if the accrued fees and costs do not warrant current billing or if other circumstances would make it appropriate to defer billing. Our invoices contain a brief narrative description of the work performed; the initials of the attorney who performed the work will appear on the statement. The invoice will include a line item reflecting in-house administrative costs. We do not bill for costs such as duplication, facsimile charges, delivery charges and postage expenses; instead, there will be an overhead charge of 5% of each invoice to cover these costs on average. The firm will be reimbursed for all outside services incurred in the course of providing legal services to our client(s). Outside services will include, but are not limited to, all third-party expenses, delivery charges, travel expenses, outside research services, filing fees, expert witness and expert consultant fees. For any unresolved matters, the Bar Association has an arbitration mechanism that can be used to resolve such matters. Late Payments. Statements for services are payable upon presentation and, in all events, within thirty (30) days after receipt. Occasionally a client has difficulty in making timely payments. To avoid burdening those clients who pay their statements promptly with the added costs we incur as a result of late payments, a late charge will be assessed on statements not paid within thirty (30) days. The maximum monthly late payment charge will be 1.5% per month. In the unlikely event we are required to institute legal proceedings to collect fees and costs, the prevailing party will be entitled to reasonable attorneys' fees and other costs of collection. CITY COUNCIL **ITEM NO. 6.1** Consulting Civil Engineers · Surveyors # **MEMORANDUM** TO: John D. Ballas, City Engineer **DATE:** June 18, 2015 FROM: James Cramsie **JOB NO.:** JN-7446 Joshua Nelson SUBJECT: Submission of the Upper San Gabriel River Enhanced Watershed Management Program Work Plan to the Los Angeles Regional Water **Quality Control Board** On December 28, 2012 the new Municipal Stormwater Permit (MS4 Permit) became effective. On June 27, 2013, the City of Industry submitted a letter to the Regional Board stating the City's intent to collaborate and form a watershed group with the Los Angeles County Flood Control District, the County of Los Angeles, and the Cities of Baldwin Park, Covina, Glendora, and La Puente (Group) in the development of an Enhanced Watershed Management Program Plan (EWMP) in order comply with the MS4 Permit. The documents are due to the Regional Board June 28, 2015. The EWMP provides for Best Management Practices (BMPs) that are expected to be sufficient to meet receiving water and effluent limitations (water quality standards) set forth in the MS4 Permit, which requires EWMP Group Members to identify institutional and structural BMPs to achieve the objectives of the EWMP. The EWMP presents a 'recipe for compliance' based on a Reasonable Assurance Analysis (RAA) which uses available data to determine the volume of stormwater runoff required to be in treated to be compliance with the MS4 Permit. The outcome of the RAA was the need for the EWMP group to capture 1,120 acre-feet of runoff. The RAA further breaks down this volume per jurisdiction and type of BMP's needed, along with the pace of implementation to achieve the interim and final water quality milestones. A conceptual planning level cost estimate is included for implementation of the EWMP Plan. The cost for the EWMP group for a 20-year implementation, including operation and maintenance is approximately \$2 billion. The City of Industry portion is \$451 million, over the same 20-year period. A financial strategy is included in the EWMP Plan, which identifies funding sources, such as grants, fees, charges and legislative policy. John D. Ballas June 18, 2015 Page Two This MS4 Permit is the first permit of its kind to require a quantitative analysis of the stormwater runoff to achieve water quality standards. Each of the permittees are faced with similar funding hurdles and challenges. In addition to the institutional and structural BMP's outlined in the EWMP, there are also specific 'regional' BMP projects that when installed will achieve the receiving water and effluent limitations for a larger drainage area. The EWMP was prepared to provide, at a minimum, one of these 'regional' type projects per jurisdiction involved in the EWMP. The project that has been identified for the City of Industry to install is a subsurface infiltration BMP at San Angelo Park and a vacant lot within the city near Temple Avenue and Valley Boulevard. A conceptual level cost estimate was prepared for the 'regional' projects identified in the EWMP. The conceptual cost developed for the San Angelo Park project is estimated to be \$7,201,000.00. A more detailed breakdown on the estimated cost can be found in Appendix B-1 of the EWMP. Because the draft EWMP is, as noted above, essentially a feasibility and planning document and does not commit the City to any particular project, the City's support of the draft EWMP is exempt from the California Environmental Quality Act (CEQA) under However, in anticipation of future Section 15262 of the State CEQA Guidelines. implementation of the activities set forth in the EWMP, LACFCD decided to prepare a Program Environmental Impact Report (PEIR) on behalf of all the EWMP agencies to provide a countywide approach that evaluates the proposed EWMP plans with a comprehensive perspective. The PEIR will help simplify later environmental review of the activities proposed in the EWMP and will avoid the preparation of multiple EIRs. For example, if Industry proceeds with the actual implementation of any of the activities analyzed in the PEIR, and the City determines that the activity is within the scope of the PEIR, and that no new effects will result, and no new mitigation measures are required, the City may approve the activity as being within the scope of the PEIR, and no additional environmental documentation would be necessary. If on the other hand, the proposed activity by the City is significantly different from what was analyzed in the PEIR or there is new information that was not known at the time the PEIR was prepared, the City may have to undertake additional environmental review at such time, but the PEIR will certainly help expedite and streamline the review process. John D. Ballas June 18, 2015 Page Three It is hereby recommended that the City Council approve the submission of the Enhanced Watershed Management Plan for the Upper San Gabriel River Enhanced Watershed Management Program Group and authorize the City Engineer to sign a Letter of Authorization for the County to submit the plan to the Los Angeles Regional Water Quality Control Board on the City's behalf. | By: | James Cramsie, PE | Signature: | James Cramsie 102 | |----------|---------------------|------------|-------------------| | | Project Engineer | | | | By: | Joshua Nelson, PE | Signature: | for MM | | | Sr. Project Manager | | | | JN/JC:jv | | | | June 11, 2015 Mr. Gary Hildebrand Assistant Deputy Director County of Los Angeles Department of Public Works Watershed Management Division, 11th Floor 900 South Fremont Avenue Alhambra, CA 91803-1331 Dear Mr. Hildebrand, AUTHORIZATION TO SUBMIT – CITY OF INDUSTRY UPPER SAN GABRIEL RIVER WATERSHED ENHANCED WATERSHED MANAGEMENT PROGRAM PLAN As required by Order No. R4-2012-0175 (Municipal Separate Storm Sewer System Permit), the City of Industry has been participating in the Upper San Gabriel River Enhanced Watershed Management Program Group to develop an Enhanced Watershed Management Program (EWMP) Plan. This Plan has been developed in partnership with the following agencies: County of Los Angeles as the coordinating agency, the Los Angeles County Flood Control District, and cities of Baldwin Park, Covina, Glendora, Industry, and La Puente. This letter serves to authorize the County of Los Angeles to submit the EWMP Plan to the California Regional Water Quality Control Board – Los Angeles Region on behalf of the City of Industry If you have any questions, please contact John D. Ballas at (626) 333-2211. Sincerely, John D. Ballas City Engineer c: Baldwin Park Covina Glendora Industry La Puente June 2015 LOS ANGELES REGIONAL WATER QUALITY CONTROL BOARD # DRAFT ENHANCED WATERSHED MANAGEMENT PROGRAM PLAN # Prepared for: **Upper San Gabriel River Enhanced Watershed Management Program Group** (County of Los Angeles, Los Angeles County Flood Control District, Cities of Baldwin Park, Covina, Glendora, Industry, and La Puente) # DRAFT ENHANCED WATERSHED MANAGEMENT PROGRAM PLAN June 2015 # Prepared For: # **Upper San Gabriel
River Enhanced Watershed Management Program Group** County of Los Angeles Los Angeles County Flood Control District City of Baldwin Park City of Covina City of Glendora City of Industry City of La Puente Prepared By: 300 N. Lake Avenue, Suite 400 Pasadena, CA 91101 In Conjunction with Larry Walker Associates, Paradigm Environmental, and Tetra Tech # **Executive Summary** The Upper San Gabriel River Enhanced Watershed Management Program Group (EWMP Group) is comprised of the County of Los Angeles (County), Los Angeles County Flood Control District (LACFCD), and the cities of Baldwin Park, Covina, Glendora, Industry, and La Puente (Group Members). The USGR EWMP Group was formed in response to provisions of National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit Order No. R4-2012-0175 (Permit). By electing the optional compliance pathway in the MS4 Permit, the EWMP Group has leveraged this EWMP to facilitate a robust, comprehensive approach to stormwater planning for the San Gabriel River Watershed. The San Gabriel River Watershed is a unique area with a wide diversity of land uses, ranging from heavily urbanized in the lower, coastal portion to nearly pristine, open spaces in the upper, higher elevation portion of the watershed in the San Gabriel Mountains. Controlling pollutants in stormwater is a major challenge for the Group Members, but regulations in the watershed provide clear compliance timelines to address water quality issues. In particular, the San Gabriel River Watershed is subject to a Total Maximum Daily Load (TMDL) for metals that requires compliance by 2026 and is listed as impaired for many pollutants including bacteria. According to the Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties (Basin Plan), metal levels above the established water quality standards can negatively impact aquatic life in the rivers, creeks, and estuary. Likewise, bacteria levels above the established standards can pose health risks to people that recreate in the watershed. The EWMP addresses these types of water quality impacts and presents a clear timeline for implementation. # **IDENTIFICATION OF WATER QUALITY PRIORITIES** The water quality prioritization process identifies and prioritizes water quality impairments in the watershed based on review of available monitoring data. Based on permit requirements, the following categories of water body-pollutant combinations (WBPCs) are identified: - Category 1 are those subject to an established TMDL, as follows: metals (lead, copper, zinc, selenium, and mercury), nutrients (total nitrogen and total phosphorus) and legacy pollutants (polychlorinated biphenyl [PCB], chlordane, dieldrin, and dichlorodiphenyltrichloroethane [DDT]). - Category 2 are those on the State Water Resources Control Board 2010 Clean Water Act Section 303(d) list or those constituents that have sufficient exceedances to be listed, including metals (lead, zinc, selenium, nickel, cadmium, mercury and copper), the legacy pollutant polycyclic aromatic hydrocarbon (PAH), bacteria, cyanide, ammonia, diazinon, dioxin, methylene blue active substances (MBAS), sulfate, chloride, total dissolved solids (TDS), cyanide, toxicity and alpha-endosulfan. - Category 3 for those with observed exceedances, but too infrequent to be listed, and conditions that are not pollutants, including dissolved oxygen (DO) and pH. ### WATERSHED CONTROL MEASURES The EWMP is designed to address all the identified Water Quality Priorities through a network of stormwater control measures. The following categories of control measures make up the EWMP: • Low impact development: control measures implemented on parcels to retain stormwater runoff during rain events. For the EWMP, the Group Members' Low Impact Development (LID) ordinances are incorporated. In addition, residential LID programs, such as a rain barrel incentive program or other methods to reduce runoff from residential properties are incorporated. Group Members will also implement LID retrofits on public parcels. - **Green streets:** the right-of-way along streets offers a significant opportunity to implement control measures on public land. The EWMP includes extensive green streets to retain runoff from roads and alleys. Green streets will potentially offer many other benefits to communities in terms of aesthetics, safety and increased property values. - Regional projects: these control measures are potentially the most effective because they are able to capture runoff from large upstream areas. The EWMP emphasizes implementation of regional projects, particularly those that are able to retain the 85th percentile, 24-hour storm event. The USGR EWMP highlights 10 multi-benefit regional projects that retain the stormwater volume from the 85th percentile, 24-hour storm for the drainage areas tributary to the multi-benefit regional projects. The selection of these sites was based on detailed spatial analysis of soil type, topography, land ownership, land use, hydrologic delineation, and environmental constraints. The EWMP includes the volume of stormwater to be captured by regional projects on private land to assure required pollutant reductions are achieved. The Watershed Management Modeling System (WMMS) was used to prioritize control measures based on water quality benefits and cost effectiveness. - Minimum control measures (MCMs): the MS4 Permit required Group Members to implement MCMs and they will continue to be implemented over the course of EWMP implementation. Enhanced MCMs are incorporated for the Covina, Glendora, Industry, and the County for 10% reduction, additional measures, such as enhanced street sweeping and installation of catch basins. ### REASONABLE ASSURANCE ANALYSIS A key element of the EWMP is the Reasonable Assurance Analysis (RAA), which is a quantitative demonstration through computer modeling that control measures will be effective in meeting water quality standards. The RAA describes baseline critical conditions and required pollutant reductions, representation of control measures, and the approach for selecting control measures. Additionally, the RAA was also applied to prioritize potential control measures to be implemented by the EWMP. The WMMS was used to conduct the RAA for the USGR EWMP. WMMS is a publicly available modeling system that incorporates three tools: (1) the watershed model for prediction of long-term hydrology and pollutant loading, (2) a best management practice (BMP) model, and (3) a BMP optimization tool to support regional, cost-effective planning efforts. The WMMS was used to evaluate millions of potential scenarios of control measures for the EWMP, and select the most cost-effective scenarios while also incorporating input from the EWMP Group regarding the needs and opportunities within the communities. The RAA Guidelines allow the EWMP to be developed with consideration of a "limiting pollutant", or the pollutant that drives BMP capacity (i.e., control measures that address the limiting pollutant will also address other pollutants). The RAA identifies the "limiting pollutants" for this watershed as zinc and *E. coli*, and provides an assurance that addressing these pollutants will address the other Water Quality Priorities in the watershed. # **EWMP IMPLEMENTATION PLAN** The outcome of the RAA presents a "recipe for compliance" for individual jurisdictions of the EWMP Group. The recipe consists of volumes of stormwater to be captured by LID, green streets, and regional projects and has a total equivalent capacity of nearly four Rose Bowl stadiums or 1,120 acre-feet. The recipe also describes the pace of implementation to achieve interim and final milestones. ### ASSESSMENT AND ADAPTIVE MANAGEMENT FRAMEWORK The EWMP Group has developed a Coordinated Integrated Monitoring Program (CIMP) separately from the EWMP to collect water quality data and measure the effectiveness of the EWMP. This section describes the process for evaluating the water quality data and "lessons learned" during implementation. # **EWMP IMPLEMENTATION COSTS AND FINANAICAL STRATEGY** Based the RAA result, the total cost for the EWMP Group for 20-year implementation including operation and maintenance is approximately \$2 billion. The costs provided here are considered to be planning level only (order of magnitude), and can be refined with actual BMP implementation costs. Funds are not currently available nor have they been identified for the EWMP Implementation Plan. The EWMP identifies potential funding sources and alternatives that could be further pursued by each Group Member, including grants, fees, charges, and legislative policy. ### STAKEHOLDER PARTICIPATION The EWMP Group is strongly committed to providing the opportunity for meaningful stakeholder input throughout the development of the EWMP. The EWMP Group conducted public stakeholder meetings on May 5, 2014 and March 9, 2015 to receive feedback from stakeholders on the overall strategy to improving water quality, proposed control measures and regional projects, and potential partnership opportunities. Community input will continue to be solicited during the course of the EWMP implementation. # **Table of Contents** | Executive Su | mmary | 1 | |--|---|-------------------------| | 1 Introduction | on | 1 | | 1.1 Ba | ackground Regulatory Framework | 2 | | 1.1.1 | | | | 1.2 U | oper San Gabriel River EWMP Area | | | 1.2.1 | San Gabriel River Watershed | 2 | | 1.2.2 | | | | 1.2.3 | San Gabriel River Valley Geological Characteristics | | | 1.2.4 | Groundwater Basins | | | 1.2.5 |
Rainfall Conditions | | | 1.3 St | akeholder Involvement | 9 | | 2 Identificati | on of Water Quality Priorities | 10 | | | ater Body-Pollutant Receiving Water Limitation Exceedances | | | | WMP Group's Water Quality Priorities | | | | BPC Classification for Compliance Scheduling | | | 2.3.1 | WBPCs included in TMDLs with Implementation Schedules | | | 2.3.2 | | | | 2.3.3 | | | | 2.4 W | BPCs Classified in Group B | | | | BPCs Classified in Group C | | | | itial Source Assessment | | | | Dischargers | | | 2.6.2 | | | | 3 Watershed | Control Measures | 30 | | 3.1 In | troduction to Categories of Control Measures | 30 | | | ructural Control Measures | | | 3.2.1 | Regional Control Measures on Public Parcels | 33 | | 3.2.2 | Regional Control Measures on Private Parcels | 48 | | 3.2.3 | LID Programs | 48 | | 3.2.4 | Green Streets Programs | 55 | | 3.3 In | stitutional BMPs | 57 | | 3.3.1 | Minimum Control Measures (MCMs) | 58 | | 3.3.2 | Enhanced MCMs | 58 | | 3.4 No | on-Stormwater Discharge Control measureS | 58 | | 3.5 St | ımmary of EWMP Control Measures | 58 | | 4 Dagganahl | e Assurance Analysis | 61 | | 4 Keasonadi | | V1 | | | odeling System used for the RAA | | | | odeling System used for the RAA | 61
64 | | 4.1 M | odeling System used for the RAA | 61
64 | | 4.1 M
4.1.1
4.1.2 | odeling System used for the RAA | 61
64
64 | | 4.1 M
4.1.1
4.1.2 | odeling System used for the RAA | 61
64
65 | | 4.1 M
4.1.1
4.1.2
4.2 Ba | odeling System used for the RAA | | | 4.1 M
4.1.1
4.1.2
4.2 Ba
4.2.1 | odeling System used for the RAA Watershed Model - LSPC BMP Performance and Selection Model – SUSTAIN seline Critical Conditions and Required Pollutant Reductions Baseline Model Development and Calibration | | | 4.1 M
4.1.1
4.1.2
4.2 Ba
4.2.1
4.2.2 | odeling System used for the RAA Watershed Model - LSPC BMP Performance and Selection Model – SUSTAIN aseline Critical Conditions and Required Pollutant Reductions Baseline Model Development and Calibration Water Quality Targets Critical Conditions Limiting Pollutant Selection | 61 64 64 65 65 68 69 74 | | 4.1 M
4.1.1
4.1.2
4.2 Ba
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5 | odeling System used for the RAA Watershed Model - LSPC BMP Performance and Selection Model – SUSTAIN aseline Critical Conditions and Required Pollutant Reductions Baseline Model Development and Calibration Water Quality Targets Critical Conditions | | | 4 | 3.1 BMP Opportunities | 79 | |------------|---|-----| | 4 | 3.2 System Configuration | 79 | | 4 | -3.3 Cost Functions | 81 | | 4.4 | Selection of Control Measures for Polluant Reduction Plan | 82 | | 4 | .4.1 Selection of Control Measures for Final Wet Weather Compliance | 82 | | 4 | .4.2 Selection of Control Measures for Interim Wet Weather Compliance | | | 5 EWMI | P Implementation Plan | 88 | | 5.1 | Elements of the EWMP Implementation Plan | | | 5.2 | Stormwater Control measures to be Implemented by 2040 for Final Compliance | | | 5.3 | Scheduling of Stormwater Control measures to Achieve EWMP and TMDL Milestones | | | 5.4 | Non-stormwater Control Measures | | | 6 Assessi | ment and Adaptive Management Framework | | | 6.1 | Adaptive Management Process | | | | 5.1.1 Re-characterization of Water Quality Priorities | | | | 5.1.2 Source Assessment Re-evaluation | | | _ | 5.1.3 Effectiveness Assessment of Watershed Control Measures | | | _ | 5.1.4 Update of Reasonable Assurance Analysis | | | 6.2 | Reporting | | | | P Implementation Costs and Financial Strategy | | | 7.1 | Basis of EWMP Cost Estimates | | | 7.1 | Estimated EWMP Program Costs | | | 7.2 | Funding strategies | | | , | '.3.1 EWMP Funding Subcommittee | | | | 7.3.2 Sanitation Districts of Los Angeles County 2015 Legislative Proposal | | | | 2.3.3 Grants | | | | 7.3.4 Fees and Charges | | | | 2.5. Legislative and Policy | | | | 2.3.6 Next Steps | | | O D of one | - | 122 | # **LIST OF APPENDICES** | Appendix A-2: | Legal Authority Certification Documentation of Stakeholder Outreach Los Angeles County Flood Control District (LACFCD) Background Information | |--|---| | Appendix B-2:
Appendix B-3: | Conceptual Designs of Example Regional EWMP Projects Structural BMP Fact Sheets Geotechnical Report for Example Regional EWMP Projects Initial Environmental Study for Example Regional EWMP Projects | | Appendix C-2:
Appendix C-3:
Appendix C-4:
Appendix C-5:
Appendix C-6:
Appendix C-7: | Model Calibration and Parameters Dry Weather RAA and Non-Stormwater Analysis BMP Opportunity Summary BMP Modeling Details Green Infrastructure Results Summary Detailed Lists of Existing and Planned BMPs Cost Optimization Curves List of Screened Public Parcels | # Appendix D-1: Detailed Recipe for Final EWMP Compliance Appendix D-2: Subwatershed Index Maps with Control Measure Capacity Appendix D-3: Milestone Scheduling of EWMP Control Measures # **LIST OF TABLES** | Table 1-1 EWMP Group Land Area by Jurisdiction | 5 | |--|-----| | Table 1-2 List of Group Members with Land Use Summaries within Jurisdictional Boundaries | 5 | | Table 1-3 Annual Rainfall Totals (Water Years 2002–2011 vs. 25-year Average) | 8 | | Table 1-4 Average Rainfall Per Wet Day (Water Years 2002–2011 vs. 25-year Average) | 8 | | Table 2-1 Details for Water Body-Pollutant Combination Subcategories | 12 | | Table 2-2 Summary of Upper San Gabriel River Watershed Management Area Water Body- | | | Pollutant Combination Categories | 13 | | Table 2-3 Schedule of TMDL Milestones for the EWMP | 22 | | Table 2-4 Compliance Schedule for WBPCs in the EWMP | 23 | | Table 3-1 Types of BMPs Considered in the EWMP | 33 | | Table 3-2 GIS Data Layers and Descriptions | 37 | | Table 3-3 Scoring Matrix for Regional EWMP Project Initial Screening | 43 | | Table 3-4 Regional BMP Project Sites | 45 | | Table 4-1 Summary of Hydrology Calibration Performance by Baseline Model | 67 | | Table 4-2 Summary of Water Quality Calibration Performance by Baseline Model | 67 | | Table 4-3 Targets for Modeled Water Quality Priority Pollutants and RAA Approach for | | | Addressing Pollutants | 71 | | Table 4-4 Zinc Exceedance Volume Summary Statistics for USGR | 72 | | Table 4-5 Limiting Pollutant Selection and Justification for RAA | 76 | | Table 4-6 Required USGR Pollutant Reductions for Interim and Final Compliance | 78 | | Table 4-7 Summary of BMP Design Assumptions for Final Compliance RAA | 81 | | Table 7-1 Summary of BMP Cost Functions for Final Compliance RAA | 109 | | · · · · · · · · · · · · · · · · · · · | | | Table 7-2 EMWP Implementation Cost Summary by Jurisdiction | | |--|--------------| | Table 7-3 EWMP Implementation Cost for Baldwin Park | | | Table 7-4 EWMP Implementation Cost for Covina | | | Table 7-5 EWMP Implementation Cost for Glendora | | | Table 7-6 EWMP Implementation Cost for Industry | 115 | | Table 7-7 EWMP Implementation Cost for La Puente | 116 | | Table 7-8 EWMP Implementation Cost for Unincorporated Los Angeles County | 117 | | LIST OF FIGURES | | | Figure 1-1 Water Bodies and Geographic Boundaries of the USGR EWMP Group | | | Figure 2-1 Location of NPDES-permitted Dischargers within the USGR EWMP Area | | | Figure 3-2 Conceptual Schematic of LID Implemented at the Parcel Scale | | | Figure 3-3 Conceptual Schematic of Green Street/Green Infrastructure | | | Figure 3-4 Conceptual Schematic of Regional BMP | 32 | | Figure 3-5 Example of Two Public Parcels Grouped as One Site | | | Figure 3-6 Initial Screening Methodology | | | Figure 3-7 – Soil Infiltration Rates | | | Figure 3-8 – Ground Surface Slope | | | Figure 3-9 – RAA Subwatersheds and Flow Direction | | | Figure 3-10 – Depth to Groundwater (<20 ft. BGS) | | | Figure 3-11 – High Liquefaction Potential | | | Figure 3-12 – Groundwater Contamination | | | Figure 3-13 – Significant Ecological Areas (SEAs) | | | Figure 3-14 – Methane-Producing Landfills | | | Figure 3-15 - Bedrock | | | Figure 3-16 – Numeric Scoring Process | | | Figure 3-17 Regional EWMP Project Sites | | | Figure 3-18. Biofiltration in a Redeveloped Shopping Center Parking Lot. | | | Figure 3-19 Opportunities for Redevelopment and Residential LID. | | | Figure 3-23. Biofiltration in a Parking Lot | | | Figure 3-24. A Residential Green Street | | | Figure 3-25 Opportunities for Green Streets. | | | Figure 4-1 USGR EWMP Group Area and 258 Subwatersheds Represented by WMMS | | | Figure 4-2 SUSTAIN Model Interface Illustrating BMP Opportunities in Watershed Settings | | | Figure 4-3 Hydrology and Water Quality Calibration Stations for USGR RAA | 68 | | Figure 4-4 Illustration of How Metals Exceedance Volume is Calculated for Critical Condition | 70 | | Determination | | | Figure 4-5 Outdoor Water Use Estimates from Literature Review | /4 | | Figure 4-6 RAA Process for Establishing Critical Conditions and Addressing Water Quality | 77 | | Priorities Figure 4.7 Everynle DMD Solutions for a Selected Subviotes had and Advantage of Cost Danesit | / / | | Figure 4-7 Example BMP Solutions for a Selected Subwatershed and Advantage of Cost-Benefit Optimization | 02 | | Figure 4-8 Example Cost Optimization Curves for a Watershed: San Gabriel River (mainstem) | | | | 04 | | Figure 4-9 Illustration of how the EWMP Implementation Plan is Extracted from a Cost Optimization Curve | 05 | | Figure 4-10 Illustration of Gradually Phasing from Average to
Critical Conditions for Interim | 03 | | Milestones | 27 | | Figure 5-1 USGR EWMP Implementation Plan for Final Compliance by 2040 | | | Figure 5-2 EWMP Implementation Plan for each Watershed / Assessment Area in the USGR | | | 1 15dic 5 2 2 min implementation i tan for each materistica / 1050055ment from in the OSOR | , <i>)</i> 1 | | Figure 5-3 EWMP Implementation Plan by Subwatershed for Metals and Other Water Quality | | |--|-----| | Priorities (except <i>E. coli</i>) | 93 | | Figure 5-4 Additional Control Measures in EWMP Implementation Plan to Address E. coli | | | Figure 5-5 Additional Control Measures in EWMP Implementation Plan to Address E. coli | 95 | | Figure 5-6 Scheduling of EWMP Implementation Plan to Achieve EWMP / TMDL Milestones | 97 | | Figure 6-1 CIMP Monitoring Locations | 106 | | Figure 7-1 EWMP Implementation Cost Breakdown | 111 | | Figure 7-2 Total Capital Cost by Jurisdiction | 118 | | Figure 7-3 Total EWMP Implementation Cost by Jurisdiction | | | | | # LIST OF ACRONYMS AND ABBREVATIONS 303(d) list California State Water Resources Control Board 2010 Clean Water Act Section 303(d) list **Basin Plan** Water Quality Control Plan for the Los Angeles Region **BMP** Best Management Practice **CEDEN** California Environmental Data Exchange Network CEQA California Environmental Quality Act CIMP Coordinated Integrated Monitoring Program **County** County of Los Angeles (as a Municipality and MS4 Permittee) CTR California Toxics Rule CWH Council for Watershed Health DDT Dichloro-diphenyl-trichloroethane **DO** Dissolved Oxygen **EV** Exceedance Volume **EWMP** Enhanced Watershed Management Program GIS Geographic Information System Group Upper San Gabriel River EWMP Group Group Members County of Los Angeles, Los Angeles County Flood Control District, and the Cities of Baldwin Park, Covina, Glendora, Industry, and La Puente **HFS** High Flow Suspension **HSPF** Hydrologic Simulation Program - FORTRAN IC/ID Illicit Connection/Illicit Discharge LACDPW Los Angeles County Department of Public Works LACFCD Los Angeles County Flood Control District LACSD Los Angeles County Sanitation District Legacy Toxics Pollutants from historic contaminants not currently used, such as PCBs and OC pesticides **LID** Low Impact Development Limiting Pollutant Pollutant that drives BMP capacity (i.e., control measures that address the limiting pollutant will also address other pollutants) **LSPC** Loading Simulation Program C++ LTA Long-Term Assessment MBAS Methylene Blue Active Substances MCM Minimum Control Measure MPN Most Probable Number MS4 Municipal Separate Storm Sewer System NIMS Nonlinearity-Interval Mapping Scheme **NOI** Notice of Intent **Nonpoint Source** Pollution that is not released through a specific geographic location but rather originates from multiple sources over a relatively large area. Nonpoint sources can related either to land or water use including failing septic tanks, animal- keeping practices, forestry practices, and urban and rural runoff. **NPDES** National Pollutant Discharge Elimination System **OC** Organochlorine **O&M** Operation & maintenance **PAH** Polycyclic Aromatic Hydrocarbon **PCB** Polychlorinated Biphenyl **PEIR** Programmatic Environmental Impact Report **Permit** Permit No. R4-2012-0175 **Point Source** Pollutant loads discharged at a specific location from pipes, outfalls, and conveyance channels. Point sources can also include pollutant loads contributed by tributaries to the main receiving water stream or river. **RAA** Reasonable Assurance Analysis **Regional Board** Los Angeles Regional Water Quality Control Board **RWL** Receiving Water Limit **RWQCB** Regional Water Quality Control Board **SGR** San Gabriel River **SUSTAIN** System for Urban Stormwater Treatment and Analysis Integration **SWPPP** Stormwater Pollution Prevention Plan **TAC** Technical Advisory Committee **TCDD** 2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dioxin) TDS Total Dissolved Solids TMDL Total Maximum Daily Load **USEPA** United States Environmental Protection Agency **USGR** Upper San Gabriel River USGS United States Geological Survey WBPC Water Body-Pollutant Combination WLA Waste Load Allocation WMMS Watershed Management Modeling System WMP Watershed Management Program **WQBEL** Water Quality Based Effluent Limitation WQO Water Quality Objectives WRP Water Reclamation Plant # 1 Introduction The Upper San Gabriel River (USGR) Enhanced Watershed Management Program (EWMP) has been developed by the Upper San Gabriel River Enhanced Watershed Management Program Group (Group), which comprises the County of Los Angeles, Los Angeles County Flood Control District (LACFCD), and the Cities of Baldwin Park, Covina, Glendora, Industry, and La Puente. The EWMP fulfills the requirements of the National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit Order No. R4-2012-0175 (Permit), which was adopted by the Los Angeles Regional Water Quality Control Board (RWQCB or Regional Board) and became effective on December 28, 2012. The EWMP contains customized strategies, watershed control measures, and best management practices (BMPs), including multi-benefit regional projects that retain and infiltrate stormwater runoff from the 85th-percentile, 24-hour storm event for the drainage area tributary to the project. As required on page 39 of the Standard Provisions of the Permit, each permittee must maintain the legal authority to implement the provisions of the Permit consistent to the Annual Report submittals. **Appendix A-1** includes copies of the legal authority certifications. Separately from the EWMP, the Group has developed a Coordinated Integrated Monitoring Program (CIMP) to progressively monitor water quality, determine effectiveness of the EWMP activities, and guide the Group's decisions for future adaptive management of the EWMP. This document is presented as follows: - Section 1, Introduction Discusses the regulatory framework associated with the development of the EWMP, including permit requirements. The section also reviews the San Gabriel River Watershed, with emphasis on the EWMP area, the EWMP Group's jurisdictional boundaries, and geologic and environmental characteristics of the area. - Section 2, Identification of Water Quality Priorities Identifies water quality priorities for the water body pollutant combinations (WBPCs) in the Upper San Gabriel River EWMP area, and discusses the EWMP goals to achieving water quality standards. - Section 3, Watershed Control Measures Describes the different watershed control measures (also referred to as BMPs) that could be implemented individually or on a watershed scale to create an efficient program to focus resources on water quality priorities. This section provides an overview of the various types of BMPs considered, including multi-benefit, regional projects that capture and infiltrate the 85th percentile, 24-hour storm volume. - Section 4, Reasonable Assurance Analysis Describes key elements of the RAA, which is essentially a quantitative demonstration that control measures will be effective to meet Permit requirements. This section describes the modeling system used for the RAA, baseline critical conditions and required pollutant reductions, representation of control measures in the RAA, and the approach for selecting control measures in the EWMP. - Section 5, EWMP Implementation Plan and Compliance Schedule Presents the outcome of the RAA the EWMP Implementation Plan, which is the "recipe for compliance" for each jurisdiction to address the water quality priorities and comply with the MS4 Permit. This section describes the control measures or BMPs to be implemented for each jurisdiction and each watershed/assessment area, and also the pace of implementation to achieve applicable milestones. - Section 6, Assessment and Adaptive Management Framework Describes the adaptive management process that will be used to gather information over time and modify the EWMP to reflect the most current understanding of the watershed. - Section 7, EWMP Implementation Costs and Financial Strategy Identifies the estimated order-of-magnitude cost of the activities, the amount of funding currently available to meet the needs described in the EWMP, and potential funding sources that may be available to fund the program. - **Section 8, References** Lists the references cited in this EWMP. ### 1.1 BACKGROUND REGULATORY FRAMEWORK # 1.1.1 Permit Requirements The Permit was adopted November 8, 2012, by the Regional Board and became effective December 28, 2012. The purpose of the Permit is to ensure the MS4s in Los Angeles County are not causing or contributing to exceedances of water quality objectives (WQOs) set to protect the beneficial uses in the receiving waters in the Los Angeles region. On June 26, 2013, the EWMP Group submitted a notice of intent (NOI) to develop an EWMP to fulfill the requirements of the NPDES MS4 Permit Order. Subsequently, the draft EWMP Work Plan and draft CIMP were submitted to the Regional Board on June 26, 2014. To establish consistency with Part VI.C.5-C.8 of the Permit, this EWMP: - (i) Prioritizes water quality issues resulting from stormwater and non-stormwater discharges from the MS4 to receiving waters within the EWMP area; - (ii) Identifies and implements strategies, control measures, and BMPs to achieve the outcomes specified in Part VI.C.1.d of the Permit; - (iii) Modifies strategies, control measures, and BMPs, as necessary, based on analysis of monitoring data to ensure that applicable water quality-based effluent limitations (WQBELs) and receiving water limitations (RWLs) and other milestones set forth in this EWMP are achieved in the required timeframes; and - (iv) Provides appropriate opportunity for meaningful stakeholder input. The EWMP identifies multi-benefit regional projects that retain (i) all
non-stormwater runoff and (ii) all stormwater runoff from the 85th percentile, 24-hour storm event for the drainage areas tributary to the projects. # 1.2 UPPER SAN GABRIEL RIVER EWMP AREA # 1.2.1 San Gabriel River Watershed The San Gabriel River Watershed encompasses approximately 680 square miles of eastern Los Angeles County, northwest Orange County, and southwest San Bernardino County. The San Gabriel River itself has a main channel length of approximately 58 miles. Its headwaters originate in the San Gabriel Mountains with the East, West, and North Forks. The river flows through residential, commercial and industrial areas before reaching the Pacific Ocean in Long Beach. The main tributaries of the river are Walnut Creek Wash, San Jose Creek, and Coyote Creek. The EWMP area is mainly located in the upper portion of the San Gabriel River Watershed. Water bodies within the EWMP area include: - Thompsons Wash - Little Dalton Wash - Big Dalton Wash - San Dimas Wash - Walnut Creek Wash - Puente Creek - San Jose Creek Reaches 1 and 2 - San Gabriel River Reaches 2, 3, 4, and 5 - North Fork of Coyote Creek Water bodies downstream of the EWMP area include: - San Gabriel River Reach 1 - Coyote Creek - San Gabriel River Estuary Additionally, there are unnamed tributaries draining unincorporated County areas that discharge into Coyote Creek and Puddingstone Reservoir. # 1.2.2 EWMP Group Jurisdictional Boundaries The EWMP Group consists of five cities, unincorporated areas of the County, and the LACFCD. Water bodies and geographic boundaries of the USGR EWMP Group are shown on **Figure 1-1** along with the named water bodies. The LACFCD owns and operates the majority of flood control facilities within the San Gabriel River Watershed, while a small portion are owned and operated by the United States Army Corps of Engineers. The EWMP Group includes the LACFCD service areas as depicted in **Appendix A-3**. **Table 1-1** shows the land area distribution by each jurisdiction for the EWMP Group not including the Angeles National Forest. Size and land uses for the Group Members' jurisdictional boundaries are provided in **Table 1-2**. County Puddingstone Baldwin Park County County Industry San Bernardino County County Orange County SGR Reach **USGR EWMP Group Jurisdictional Boundaries** San Gabriel River WMA **County Boundary** Basin Plan Water Body 6 Storm Drain System Miles Figure 1-1 Water Bodies and Geographic Boundaries of the USGR EWMP Group Table 1-1 EWMP Group Land Area by Jurisdiction | Jurisdiction | Land Area (acres) | Percent (%) | |--------------------------|-------------------|-------------| | County of Los Angeles | 40,812 | 59.4 | | City of Baldwin Park | 4,335 | 6.3 | | City of Covina | 4,481 | 6.5 | | City of Glendora | 9,307 | 13.5 | | City of Industry | 7,647 | 11.1 | | City of La Puente | 2,207 | 3.2 | | LACFCD | N/A | N/A | | Total Area of EWMP Group | 68,789 | 100 | Table 1-2 List of Group Members with Land Use Summaries within Jurisdictional Boundaries | | Area | Percent of Land Area ⁽¹⁾ | | | | |-----------------------|---------|-------------------------------------|---------|--------|------| | Group Member | (acres) | Res | Com/Ind | Ag/Nur | Open | | Baldwin Park | 4,335 | 66 | 31 | 2 | 1 | | Covina | 4,481 | 65 | 32 | <1 | 3 | | Glendora | 9,307 | 48 | 13 | 1 | 38 | | Industry | 7,647 | <1 | 75 | 3 | 22 | | La Puente | 2,207 | 71 | 24 | <1 | 5 | | County of Los Angeles | 40,812 | 50 | 14 | 1 | 35 | | LACFCD | N/A | N/A | N/A | N/A | N/A | | All Members | 68,789 | 47 | 23 | 1 | 29 | ¹ Land use classifications include: residential (res), commercial and industrial (com/ind), agriculture and nursery (ag/nur), and open space (open). Totals correspond to the percent of the total area considered in the EWMP. # 1.2.3 San Gabriel River Valley Geological Characteristics The geology of the San Gabriel River Watershed can be subdivided into three basic types of geologic materials: - Bedrock materials in the steep upper portion of the watershed in the Angeles National Forest in the San Gabriel Mountains - Sedimentary materials comprising valley fill emanating from alluvial fans from the San Gabriel Mountains - Marine sedimentary deposits which comprise the San Jose Hills and Puente Hills The bedrock materials of the San Gabriel Mountains consist of igneous and metamorphic rocks, which were uplifted by faulting to form steep ridges and valleys in the upper portion of the watershed. These rocks are generally impermeable and transmit only small quantities of water through fractures. The sedimentary materials which comprise the flatter areas of the valley are comprised of alluvial fan and fluvial deposits. These deposits tend to be very permeable, especially near the northern portions of the valley adjacent to the San Gabriel Mountains. The valley fill materials consist of interbedded silt, sand and gravels. The numerous gravel pits in the valley are located in these deposits. The deposits represent the most promising areas for regional infiltration facilities. During dry weather, surface water from the San Gabriel Mountains infiltrates rapidly into these deposits, providing a hydraulic separation of the lower portions of the watershed. A goal of the monitoring in the Coordinated Integrated Monitoring Program (CIMP) will be to establish when the EWMP area is hydraulically connected to the downstream water bodies. The sedimentary deposits which form the upland areas of the San Jose Hills and Puente Hills consist of marine sandstone, siltstone, and shale. Because these deposits are fine-grained and consolidated, they have relatively low permeability. Aside from the disadvantages of higher elevation and relatively steep slopes, they represent poor areas for infiltration because of their expected low permeability. # 1.2.4 Groundwater Basins The alluvial and fluvial valley-fill deposits in the flatter areas of the watershed form two groundwater basins that underlie the EWMP area. Most of the area of Covina, Baldwin Park, and Glendora overlie the Main San Gabriel Groundwater Basin. This groundwater basin is an important source of water supply, with a typical production of 250,000 acre-feet of water per year. The basin is adjudicated and actively managed by the Main San Gabriel Watermaster. Groundwater flow is generally from east to west across the basin, then southward into the Central Basin through the Montebello Forebay. There are numerous existing stormwater capture facilities that are operated by LACFCD, the largest being along the San Gabriel River and Santa Fe Dam. The groundwater contains a number of contaminant plumes stemming from past agricultural and industrial practices, including nitrate, volatile organic compounds, and perchlorate. The Puente Basin is a smaller groundwater basin roughly co-located with the City of Industry south of the San Jose Hills. Groundwater flow is generally westward, flowing into the Main San Gabriel Basin near Highway 605. The Puente Basin is also adjudicated and managed by a three-person watermaster committee. The average production from this basin is approximately 1,000 acre-feet per year. Due to the poor quality of the groundwater, it is used for non-potable purposes including blending with reclaimed water, construction water, and irrigation. # 1.2.5 Rainfall Conditions The semi-arid climate of the Los Angeles region creates distinct hydrologic differences between the dry and wet seasons. The amount of rainfall is a key variable for water quality conditions and pollutant loadings from MS4 areas. To support EWMP development, a rainfall analysis was performed by aggregating data from available rain gages across the San Gabriel River Watershed. For comparison, other watersheds were also analyzed. Two key metrics were evaluated: (1) total annual rainfall, and (2) average rainfall per wet day (with wet days defined as days with rainfall totals greater than 0.1 inches). The second metric serves as a coarse indicator of rainfall intensity. The analysis covered 25 water years from 1987 through 2011—the total rainfall for each precipitation gage was aggregated into annual totals based on water year (i.e. previous October through current September). For EWMP development, the last 10 years of available data from years 2002 to 2011was used to develop the RAA (Section 4). As shown in **Table 1-3** and **Table 1-4**, these 10 years were compared to the overall 25 years of record. Both the average and 90th percentile values were compared across the 10- and 25-year records. For the San Gabriel River, water year 2008 is a representative average year based on both rainfall metrics (yellow cells in **Table 1-3** and **Table 1-4**), while water year 2003 was proximal to the 90th percentile values for San Gabriel River in terms of rainfall per wet day, which is a conservative metric for BMP planning (green highlighted cells in **Table 1-4**). As such, for the San Gabriel River, water year 2008 is a representative year for average conditions and water year 2003 is a representative year for critical wet conditions, which will be important boundary conditions for the RAA (Section 4). Table 1-3 Annual Rainfall Totals (Water Years 2002–2011 vs. 25-year Average) | | Average Rainfall Totals (inches/year) | | | | | |--|---------------------------------------|----------------------|-----------------|----------------------|----------------------| | Water Year | Ballona
Creek | Dominguez
Channel | Malibu
Creek | San Gabriel
River | Los Angeles
River | | 2002 | 25.4 | 19.1 | 28.1 | 30.6 | 30.5 | | 2003 | 17.1 | 13.9 | 20.8 | 23.0 | 20.4 | | 2004 | 10.2 | 8.1 | 9.2 | 13.7 | 11.2 | | 2005 | 39.3 | 28.4 | 42.6 | 49.6 | 46.7 | | 2006 | 14.1 | 9.8 | 16.9 | 17.9 | 17.5 | | 2007 | 4.3 | 3.1 | 6.8 | 6.4 | 5.8 | | 2008 | 13.2 | 11.9 | 18.6 | 19.4 | 17.5 | | 2009 | 9.6 | 8.5 | 12.3 | 14.6 | 12.5 | | 2010 | 16.8 | 14.9 | 20.3 | 24.1 | 20.5 | | 2011 | 21.2 | 18.5 |
25.3 | 28.5 | 25.7 | | Avg. (1987-2011) | 15.9 | 12.5 | 18.4 | 20.7 | 19.2 | | 90 th Percentile
(1987-2011) | 30.8 | 22.9 | 34.7 | 37.8 | 36.9 | Yellow highlighted cells are the two years in each basin with the smallest difference from the 25-year average. Green cells have the smallest difference from 90th percentile of the 25-year record. Table 1-4 Average Rainfall Per Wet Day (Water Years 2002–2011 vs. 25-year Average) | | Average Rainfall Per Wet Day (inches/wet day) | | | | | |--|---|----------------------|-----------------|----------------------|----------------------| | Water Year | Ballona
Creek | Dominguez
Channel | Malibu
Creek | San Gabriel
River | Los Angeles
River | | 2002 | 0.36 | 0.32 | 0.41 | 0.42 | 0.36 | | 2003 | 0.79 | 0.66 | 0.88 | 0.92 | 0.84 | | 2004 | 0.61 | 0.48 | 0.61 | 0.66 | 0.58 | | 2005 | 0.98 | 0.69 | 1.03 | 1.07 | 1.03 | | 2006 | 0.53 | 0.41 | 0.61 | 0.64 | 0.61 | | 2007 | 0.31 | 0.27 | 0.39 | 0.41 | 0.37 | | 2008 | 0.56 | 0.52 | 0.68 | 0.76 | 0.71 | | 2009 | 0.49 | 0.48 | 0.56 | 0.65 | 0.57 | | 2010 | 0.64 | 0.60 | 0.71 | 0.82 | 0.72 | | 2011 | 0.62 | 0.58 | 0.73 | 0.76 | 0.70 | | Avg. (1987-2011) | 0.59 | 0.52 | 0.67 | 0.72 | 0.66 | | 90 th Percentile
(1987-2011) | 0.78 | 0.66 | 0.91 | 0.97 | 0.89 | Yellow highlighted cells are the two years in each basin with the smallest difference from the 25-year average. Green cells have the smallest difference from 90th percentile of the 25-year record. # 1.3 STAKEHOLDER INVOLVEMENT The EWMP Group is strongly committed to providing the opportunity for meaningful stakeholder input throughout the development of the EWMP. The EWMP Group participated in watershed coordination meetings that were developed to facilitate collaboration among watershed groups within the SGR Watershed as well as the Technical Advisory Committee (TAC), which was established by MS4 Permit to facilitate participation in the EWMP development by the Regional Board and stakeholder groups. The EWMP Group conducted public stakeholder meetings on May 5, 2014 and March 9, 2015 to receive feedback from stakeholders on the overall strategy to improving water quality, proposed control measures and regional projects, and potential partnership opportunities. USGR EWMP Group Members will continue to engage the communities during the course of EWMP implementation. Documentation of stakeholder outreach is provided in **Appendix A-2**. # 2 Identification of Water Quality Priorities Water quality priorities establish the goals for the EWMP, and support prioritization and scheduling of EWMP control measures. The water body pollutant combination (WBPC) defines the specific location and constituent that needs to be addressed in the watershed. The USEPA defines a water body as "a geographically defined portion of navigable waters, waters of the contiguous zone, and ocean waters under the jurisdiction of the United States, including segments of rivers, streams, lakes, wetlands, coastal waters and ocean waters". Concrete-lined channels present in the EWMP area are therefore defined as as water bodies. The Permit outlines a specific set of priorities based on total maximum daily loads (TMDLs), State Water Resources Control Board 2010 Clean Water Act Section 303(d) list, and monitoring data. Data were obtained from available sources and analyzed to evaluate exceedances of water quality objectives (WQOs). The determination of the WBPCs for the group is presented below. # 2.1 WATER BODY-POLLUTANT RECEIVING WATER LIMITATION EXCEEDANCES Monitoring data for sites within the Upper San Gabriel River Watershed Management Area was obtained from the following sources: - The LACFCD provides long-term monitoring data from the San Gabriel River Mass Emission Stations S14 and S13. - LACFCD tributary monitoring sites, each operated for two years: - o Big Dalton Wash TS13 - o Puente Creek TS14 - o San Jose Creek TS15 - Maplewood Channel TS16 - North Fork of Coyote Creek TS17 - o Artesia-Norwalk Drain TS18 - The Council for Watershed Health (CWH) provides monitoring data from their monitoring activities throughout the San Gabriel River Watershed. - The California Environmental Data Exchange Network (CEDEN). - LACSD provides long-term dry weather receiving water monitoring data. Stormwater quality data are sparse for the receiving waters in the EWMP area. Data obtained from the CWH and CEDEN largely consisted of short-term monitoring activities and many sites from these programs were only used for a single sampling event or had a limited number of constituents tested at the sites. However, the two LACFCD mass emission stations provide a history of stormwater quality for the upper San Gabriel River and Coyote Creek. Additionally, the tributary monitoring sites provide a two-year snapshot of stormwater quality within the watershed. All data were screened to identify potential WQO exceedances. During dry weather the San Gabriel River is typically dry upstream of the confluence with San Jose Creek and downstream of Whittier Dam. LACSD receiving water monitoring provides characterization of portions of the San Gabriel River, San Jose Creek, and Coyote Creek during dry weather. Monitoring of other receiving waters is generally sporadic, with the exception of the LACFCD program. A large number of sites on receiving waters downstream from the EWMP area are regularly monitored under dry weather conditions by LACFCD. To identify the water quality priorities in the EWMP area, data reflective of receiving waters downstream from the EWMP area were considered. It is not known at this time if the MS4 discharges from the EWMP area are contributing to water quality issues observed downstream. During dryweather, the water bodies in the EWMP area are generally hydraulically disconnected from the lower sections of the watershed due to the rapid infiltration over soft-bottom channels. The monitoring performed under the CIMP will also provide information to support a determination of whether the discharges are affecting the water quality of water bodies within and downstream of the EWMP area. The water quality data are compared to the WQBELs, where available, or the WQOs to determine if the constituent exceeds the limitations in the past five years. Based on the data review, constituents that had no observed exceedances in the past five years or would not meet the 303(d) listing criteria for impairment could potentially be delisted are identified in the prioritization process. #### 2.2 EWMP GROUP'S WATER QUALITY PRIORITIES Water quality priorities for the EWMP area are based on TMDLs, 303(d) list, and monitoring data. From the available information and data analysis results, WBPCs were classified in one of the three Permitdefined categories. Category 1 if WBPCs are subject to established TMDLs, Category 2 if they are on the 303(d) list, or have sufficient exceedances to be listed, and Category 3 if there are observed exceedances but too infrequently to be listed. Subcategories were identified and created to refine the prioritization process. Those pollutants with measurements exceeding WQOs are further evaluated and categorized based on the frequency, timing, and magnitude of exceedances. The subcategories are listed in **Table 2-1**. The WBPCs are placed in the respective subcategories as outlined in **Table 2-2**. Table 2-1 Details for Water Body-Pollutant Combination Subcategories | Category | Water Body-Pollutant Combinations (WBPCs) | Description | |----------|--|---| | 1 | Category 1A: WBPCs with past due or current Permit term TMDL deadlines with exceedances in the past 5 years. | WBPCs with TMDLs with past due or current Permit term interim and/or final limits. These pollutants are the highest priority for the current Permit term. | | | Category 1B: WBPCs with TMDL deadlines beyond the Permit term with exceedances in the past 5 years. | The Permit does not require the prioritization of TMDL interim and/or final deadlines outside of the Permit term or USEPA TMDLs, which do not have implementation | | | Category 1C: WBPCs addressed in USEPA TMDL without a Regional Board Adopted Implementation Plan. | schedules. To ensure EWMPs consider long term planning requirements and utilize the available compliance mechanisms these WBPCs should be considered during BMP planning and scheduling, and during CIMP development. | | | Category 1D: WBPCs with past due or current Permit term TMDL deadlines but have not exceeded in past 5 years. | WBPCs where specific actions may end up not being identified because recent exceedances have not been observed and specific actions may not be necessary. The | | | Category 1E: WBPCs with future Permit term TMDL deadlines but have not exceeded in past 5 years. | CIMP should address these WBPCs to support future re-prioritization. | | 2 | Category 2A: 303(d) Listed WBPCs or WBPCs that meet 303(d) Listing requirements with exceedances in the past 5 years. | WBPCs with confirmed impairment or exceedances of RWLs. WBPCs in a similar class as those with TMDLs are identified. WBPCs currently on the 303(d) List are differentiated from those that are not to support utilization of WMP compliance mechanisms. | | | Category 2B: 303(d) Listed WBPCs or WBPCs that meet 303(d) Listing requirements that are not a "pollutant" (i.e., toxicity). | WBPCs where specific actions may not be identifiable because the cause of the impairment or exceedances is not resolved.
Either routine monitoring or special studies identified in the CIMP should support identification of a "pollutant" linked to the impairment and re-prioritization in the future. | | | Category 2C: 303(d) Listed WBPCs or WBPCs that meet 303(d) Listing requirements but have not exceeded in past 5 years. | WBPCs where specific actions for implementation may not be identified because recent exceedances have not been observed. Pollutants that are in a similar class as those with TMDLs are identified. Routine monitoring identified in the CIMP should ensure these WBPCs are addressed to support re-prioritization in the future. | | 3 | Category 3A: All other WBPCs with exceedances in the past 5 years. | Pollutants that are in a similar class ¹ as those with TMDLs are identified. | | | Category 3B: All other WBPCs that are not a "pollutant" ² (i.e., toxicity). | WBPCs where specific actions may not be identifiable because the cause of the impairment is not resolved. Routine monitoring identified in the CIMP should support identification of a "pollutant" linked to the impairment and re-prioritization in the future. | | | Category 3C: All other WBPCs but have not exceeded in past 5 years. | Pollutants that are in a similar class ¹ as those with TMDLs are identified. | | | Category 3D: WBPCs identified by the EWMP Group. | The EWMP Group may identify other WBPCs for consideration in WMP planning. | Pollutants are considered in a similar class if they have similar fate and transport mechanisms, can be addressed via the same types of control measures, and within the same timeline already contemplated as part of the EWMP for the TMDL. (Permit pg. 49 – RWQCB, 2012). While one or more pollutants may be contributing to the impairment, it currently is not possible to identify the specific pollutant/stressor. Table 2-2 Summary of Upper San Gabriel River Watershed Management Area Water Body-Pollutant Combination Categories | | | | | | | Within EN | IWP Area | | | Down | stream of
Area | EWMP | |----------------------|--|-----------------------|-----------|------------|---------------|-------------|-----------------|----------------------------|-------------------|--------|-------------------------|----------------| | | | San Ga
Riv
Read | er | | Jose
Reach | - Puente | Walnut
Creek | North
Fork of
Coyote | Pudding-
stone | Coyote | San
Gabriel
River | San
Gabriel | | Class ⁽¹⁾ | Constituent ⁽²⁾ | 2 | 3 | 1 | 2 | Creek | Wash | Creek | Reservoir | Creek | | Estuary | | Category | 1A: WBPCs with past due or current term T | MDL dea | ıdlines v | with exce | edances | in the past | t 5 years. | | | | | | | Metals | Copper (Dry) | | | | | | | I | | I | I | I | | | Copper (Wet) ⁽⁴⁾ | | | | | | | I | | I | | | | | Zinc (Wet) ⁽⁴⁾ | | | | | | | I | | I | | | | | Selenium (Dry) | | | I | I | | | | | | | | | Category | 1B: WBPCs with TMDL deadlines beyond th | e curren | t Permit | term an | d with ex | ceedances | in the past | 5 years. | | | | | | Metals | Copper (Dry) | | | | | | | F | | F | F | F | | | Copper (Wet) (4) | | | | | | | F | | F | | | | | Zinc (Wet) (4) | | | | | | | F | | F | | | | | Selenium (Dry) | | | F | F | | | | | | | | | Category | 1C: WBPCs addressed in USEPA TMDL with | nout an I | mpleme | entation I | Plan | | | | | | | | | Nutrients | Total Nitrogen | | | | | | | | Х | | | | | | Total Phosphorus | | | | | | | | Χ | | | | | Metals | Total Mercury | | | | | | | | Χ | | | | | Legacy | Polychlorinated Biphenyl (PCB) (Sediment) | | | | | | | | Χ | | | | | | PCB (Water) | | | | | | | | Χ | | | | | | Chlordane (Sediment) | | | | | | | | Χ | | | | | | Chlordane (Water) | | | | | | | | X | | | | | | Dieldrin (Sediment) | | | | | | | | Χ | | | | | | Dieldrin (Water) | | | | | | | | Χ | | | | | | DDT (Sediment) | | | | | | | | Χ | | | | | | DDT (Water) | | | | | | | | Χ | | | | Table 2-2 Continued | | | | | | Within | EMWP / | Area | | | Down | stream of
Area | EWMP | |----------------------|--|------------|---------------------------------|------------------|-------------|-----------------|-------------------------|-----------------------|------------------------|---------------------|---------------------|------------------------| | | | | Gabriel
Reach ⁽³⁾ | San Jose
Read | | Puen | Malant | North Fork | Pudding- | 04 | San
Gabriel | San | | Class ⁽¹⁾ | Constituent ⁽²⁾ | 2 | 3 | 1 | 2 | te
Cree
k | Walnut
Creek
Wash | of
Coyote
Creek | stone
Reservoi
r | Coyot
e
Creek | River
Reach
1 | Gabriel
Estuar
y | | Category | 1D: WBPCs with past due or current te | rm dead | lines witho | ut exceedar | nces in the | e past 5 | years. | • | • | • | • | · | | Metals | Lead (Wet) ⁽⁵⁾ | I | I | I | I | I | l | I | | I | | | | Category | • 1E: WBPCs with TMDL deadlines beyon | ond the c | urrent Per | mit term with | out exce | edances | in the pas | t 5 years. | | | | <u> </u> | | Metals | Lead (Wet) ⁽⁵⁾ | F | F | F | F | F | F | F | | F | | | | Category | 2A: 303(d) Listed WBPCs with exceed | ances in | the past 5 | years. | | | | .1 | | <u>.</u> | | <u>.</u> | | Bacteria | Indicator Organisms | 303(d) | 303(d) | 303(d) | | | Metal | Lead | | | | Dry | | | | | Dry | | | | | Zinc | | Wet | | | | | | | Dry | | | | | Selenium | | | | | 303(d) | | 303(d) | | | | | | | Copper | | Х | | | Χ | Х | | | | | | | Legacy | Polycyclic Aromatic Hydrocarbon (PAH) | Х | Х | Х | Х | | | | | | | | | Other | Cyanide | 303(d) | Χ | | | | | | | Х | | • | | Category | 2B: 303(d) Listed WBPCs that are not | a "polluta | ant" ⁽⁶⁾ (i.e., | toxicity). | | | | | | | | 4 | | Other | Benthic-Macroinvertebrates | | | | | | 303(d) | | | | | | | Other | Dissolved Oxygen (DO) | | | | | | | | | | • | 303(d) | | Other | pH | | | 303(d) | | | 303(d) | | | 303(d) | 303(d) | | | Other | Toxicity | | | 303(d) | | | | | | 303(d) | | | continued Table 2-2 Continued | | Within EMWP Area San Gabriel | | | | | | | | | Downstre | am of EMV | VP Area | |----------------------|--|------------|---------------------------------------|----------------|------|--------|---------------|-----------------|---|----------|-------------------------|----------------| | | | Ri | Gabriel
iver
ach ⁽³⁾ | San .
Creek | Jose | Puente | Walnut | | Pudding- | Coyote | San
Gabriel
River | San
Gabriel | | Class ⁽¹⁾ | Constituent ⁽²⁾ | 2 | 3 | 1 | 2 | Creek | Creek
Wash | Coyote
Creek | stone
Reservoir | Creek | Reach 1 | Estuary | | Category | , 2C: 303(d) Listed WBPCs without exceedar | ices in | past 5 ye | ears. | | | • | | | | • | | | Nutrients | Ammonia | | | 303(d) | | | | | | 303(d) | | | | Other | Diazinon | | | | | | | | | 303(d) | | | | Other | 2,3,7,8-TCDD (Dioxin) | | | | | | | | | | | 303(d) | | Metal | Cadmium | | | | Wet | | | | | | | | | | Copper | | | Х | | | | | | | | | | | Lead | | | | | Dry | Dry | | | | | | | | Zinc | | | Х | | Х | Х | | | | | | | | Nickel | | | | | | | | | Dry | | 303(d) | | | Mercury (Total) | | | | | | | X | | | | | | Salts | Total Dissolved Solids (TDS) (Dry) | | | 303(d) | | | | | | | | | | Category | / 3A: WBPCs with exceedances in the past 5 | years. | | - | | | | | *************************************** | | | | | Other | MBAS (methylene blue active substances) | | Wet | | | | | | | Wet | | | | Salts | Sulfate | | Dry | Dry | Dry | | | | | | | | | | Chloride | | Dry | Dry | Dry | | | | | Dry | | | | | TDS | | Dry | | | | | | | | | | | Legacy | Alpha-Endosulfan | | | | | | | | | Dry | | | | Other | Cyanide | | | | | | | Х | | | | | | Category | , 3B: WBPCs that are not a "pollutant" ⁽⁴⁾ (i.e. | , toxicity | y). | | | | | <u>-</u> | | | <u>.</u> | 2 | | Other | Dissolved Oxygen (DO) | | Χ | Х | Χ | | | | | Wet | Dry | | | | pH | | | | | Χ | | Dry | | | | | continued Table 2-2 Continued | | | | | | Withi | in EMWP Are | a | | | Downstr | eam of EM | WP Area | |----------------------|----------------------------|--------------|-----------------------------------|---------------|-----------------|-------------------|---------------|-----------------|--------------------|-----------------|------------------|--------------------| | | | | briel River
ach ⁽³⁾ | | se Creek
ach | D | Walnut | North Fork of | Pudding- | | San
Gabriel | San | | Class ⁽¹⁾ | Constituent ⁽²⁾ | 2 | 3 | 1 | 2 | - Puente
Creek | Creek
Wash | Coyote
Creek | stone
Reservoir | Coyote
Creek | River
Reach 1 | Gabriel
Estuary | | Category | 3C: WBPCs with his | torical exce | edances bu | it none in th | e past 5 ye | ars. | | · | | | | | | Other | Cyanide | | | Х | | | | | | | | | | Metals | Selenium | | | | | | Х | | | | Х | Х | | | Lead | | | | | | | | | | | Х | | | Copper | | | | | | | Dry | | | | | | | Zinc | | | | | | | | | | | Х | | | Mercury (Total) | | | | | | Х | | | | | | | Other | Lindane | | Х | | | | | | | | | | - 1 Pollutants are considered in a similar class if they have similar fate and transport mechanisms, can be addressed via the same types of control measures, and within the same timeline already contemplated as part of the EWMP for the TMDL. - 2 WBPC listed as Wet or Dry where issue is restricted to a condition. Otherwise, WBPC is both an issue for both Wet and Dry - 3 Data from Mass Emission Station S14 are included under San Gabriel River Reach 3 because the station is located just downstream of the reach break. TMDL and 303(d) listings historically applied to Reach 2. - 4 Grouped allocation. Compliance in Coyote Creek, as measured at the Coyote Creek LTA station, is compliance for all tributaries. - 5 Grouped allocation. Compliance in San Gabriel River Reach 2, as measured at the San Gabriel LTA station, is compliance for all tributaries. - 6 While pollutants may be contributing to the
impairment, it currently is not possible to identify the specific pollutant/stressor. - I/F Denotes where the Permit includes interim (I) and/or final (F) effluent and/or RWLs. - X WBPC determined through data analysis - 303(d) WBPC on the 2010 303(d) List where the listing was confirmed during data analysis. #### 2.3 WBPC CLASSIFICATION FOR COMPLIANCE SCHEDULING Each WBPC is linked to a compliance schedule. There are four scheduling conditions under which the WBPCs may fall, including: - Established schedule in an adopted TMDL including the WBPC (Category 1A, 1B, 1D, 1E) - USEPA Adopted TMDL including the WBPC (Category 1C) - 303(d) listed WBPC, or could be listed through the review of data (All Category 2) - Observed exceedances of WBPC, but does not meet 303(d) listing criteria (All Category 3) Where an established TMDL implementation schedule exists for a WBPC, the associated milestones and implementation schedule will apply. USEPA TMDLs, 303(d) listings without a TMDL adopted, and other exceedances of RWLs do not contain milestones or an implementation schedule. These water quality priorities do not have a defined schedule for implementation. To address this issue for USEPA TMDLs, the Permit allows schedules to be proposed in the EWMP. To address the issue of RWL exceedances associated with WBPCs on the 303(d) List or other exceedances of RWLs, interim numeric milestones and compliance schedules must be set for each WBPC based on its placement in one of the following groups: - **Group A:** Pollutants that are in the same class¹ as those addressed in a TMDL in the watershed and for which the water body is identified as impaired on the 303(d) List as of December 28, 2012; - **Group B:** Pollutants that are not in the same class as those addressed in a TMDL for the watershed, but for which the water body is identified as impaired on the 303(d) List as of December 28, 2012; or - **Group C:** Pollutants for which there are exceedances of RWLs, but for which the water body is not identified as impaired on the 303(d) List as of December 28, 2012; or - **USEPA TMDL:** Pollutants addressed by USEPA TMDL without an implementation plan/schedule. The process for setting numeric milestones and compliance schedules for the remaining water quality priorities is dependent upon whether the water body is identified as impaired on the 303(d) list as of December 28, 2012 and if the pollutants are considered to be in the same class as those pollutants addressed in a TMDL for the watershed. Two findings must be made to determine whether or not a pollutant is in the same class as a TMDL pollutant: - The pollutant must have similar fate and transport mechanisms (e.g., sediment particle associated), and thus, can be addressed via the same types of control measures. These pollutants are in the same "BMP class" as other TMDL pollutants. - The pollutant is in the same "scheduling class", that is, it can be addressed within the same timeline already established in an existing TMDL. To be considered in the same scheduling class, the water quality priority must be present in a water body already being addressed by the TMDL or upstream of Page 17 ¹ As defined in Part VI.C.2.a.i of the Permit (page 49), "Pollutants are considered in a similar class if they have similar fate and transport mechanisms, can be addressed via the same types of control measures, and within the same timeline already contemplated as part of the Watershed Management Program for the TMDL." The need to define the control measures and timelines for addressing the various pollutants per the permit requirements, "classes" are preliminary and may be refined as part of EWMP development. a water body already being addressed by the TMDL and can be addressed on the same time frame as the TMDL pollutant. To define whether a pollutant can be addressed within the same time frame as a TMDL pollutant, it is necessary to consider whether the reductions that will be achieved by the control measures implemented for the TMDL pollutant are expected to be sufficient to achieve the needed reductions for the other pollutants. The "limiting pollutant" analysis of the RAA is used to evaluate whether control measures implemented for the Regional Board adopted TMDLs will be sufficient to meet the RWLs for WBPCs that have both the same BMP class. If the RWLs will be met for the WBPCs they are in the same scheduling class as the pollutants addressed by each respective Regional Board adopted TMDL. A limiting pollutant, which is acknowledged by the RAA Guidelines from the Regional Board, can be defined as a pollutant whose structural control measures² are anticipated to address exceedances from all other pollutants. In many cases, the limiting pollutant for wet weather (e.g., zinc) may differ than the limiting pollutant for dry weather (e.g., bacteria). If the limiting pollutant is a TMDL pollutant, then other pollutants in the same class would be expected to be achieved by the final compliance date of the TMDL for the limiting pollutant. If the limiting pollutant is not a TMDL pollutant, then the limiting pollutant, and all other pollutants that are more limiting than the TMDL pollutant, do not have the ability to be considered on the same timeframe as those addressed in a TMDL. To be in the same class as a TMDL pollutant, the WBPC must be in both the same "BMP class" and the same "scheduling class" as the TMDL pollutant. The requirements for milestones and compliance schedules are detailed in the Permit, and are summarized as follows: - Group A pollutants, are to be given milestones and dates for their achievement consistent with those in the corresponding TMDL. - Group B pollutants, are to be given enforceable requirements and milestones and dates for their achievement. - Group C pollutants, are to be given enforceable requirements and milestones and dates for their achievement. - USEPA TMDL pollutants, the time schedule requested is as short as possible, taking into account the time since USEPA establishment of the TMDL, and technological, operation, and economic factors that affect the design, development, and implementation of the control measures that are necessary to comply with the WLAs The enforceable milestones and compliance schedules requirements must control MS4 discharges such that they do not cause or contribute to exceedances of RWLs and the milestones and dates for their achievement must be within a timeframe that is as short as possible, taking into account the technological, operation, and economic factors that affect the design, development, and implementation of the control measures that are necessary. The time between dates shall not exceed one year. Milestones shall relate to a specific water quality endpoint (e.g., x% of the MS4 drainage area is meeting the RWLs) and dates shall ² By evaluating the role of *structural* control measures when identifying limiting pollutants, the scheduling of control measures can be simplified early in the planning process. For example, even though the required reductions to achieve copper RWLs may be higher than those for zinc, a significant portion of the reduction of copper loading is anticipated through the brake pad replacement programs (an institutional control measure). Zinc could be categorized as more limiting than copper because reductions in zinc loading will likely require more structural control measures. Note that adjustments to water quality objectives through special studies like water-effect ratios (WERs) could also be used to address water quality priorities during EWMP implementation, but those considerations have not been incorporated into the analysis of which pollutant is limiting. relate either to taking a specific action or meeting a milestone. In summary, Group A pollutants must have milestones and schedules consistent with the TMDL for the pollutant in the same class. Group B and C pollutants must have schedules that are as short as possible and include at least annual milestones. Furthermore, for Group B pollutants, where retention of (i) all non-stormwater runoff and (ii) all storm water runoff from the 85th percentile, 24-hour storm event is technically infeasible, and where the Regional Board determines that MS4 discharges cause or contribute to the water quality impairment, the EWMP Group may initiate development of a stakeholder-proposed TMDL upon approval of the EWMP. Any extension of this compliance mechanism beyond the current Permit term shall be consistent with the implementation schedule in a TMDL for the WBPCs adopted by the Regional Board. However, *E. coli* are the only Group B constituent, and the Regional Board is currently developing a TMDL for the San Gabriel River watershed. Benthic macro-invertebrates, dissolved oxygen, and pH are reflective of watershed pollution and not necessarily a result of MS4 discharges. Additionally, ammonia is being addressed through the implementation of nitrification and denitrification treatment processes at the LACSD facilities. These parameters are not scheduled, but will be assessed through the CIMP implementation and watershed wide stormwater monitoring coalition (SMC) and schedules developed as necessary through the adaptive management component of the CIMP and EWMP. # 2.3.1 WBPCs included in TMDLs with Implementation Schedules Compliance schedules to WBPCs are directly assigned in Regional Board-established TMDLs, and United States Environmental Protection Agency (USEPA) TMDLs with separately adopted Implementation Schedules. TMDLs and compliance schedules are presented in **Table 2-3**. The Category 1A, 1B, 1D, and 1E constituents include copper, lead, zinc, and selenium. The compliance schedule for these WBPCs has been established in the San Gabriel River Metals (SGR Metals) TMDL Implementation Plan as shown in **Table 2-4**. ### 2.3.2 WBPCs included in USEPA TMDLs Category 1C WBPCs are included in the Puddingstone USEPA TMDL. However, USEPA TMDLs do not
include implementation schedules. WBPCs in Category 1C include nutrients, mercury, and legacy toxics. The permit requirements for information included in the EWMP are as follows: - Data for current conditions of the WBPC - Description of BMPs - Time schedule to achieve compliance - Demonstration the schedule is as sort as practicable. - If the schedule exceeds one year, interim milestones are a necessary part of the schedule. To determine schedules for these WBPCs, similar TMDLs in the region are used as precedent. Unless otherwise specified, the SGR Metals TMDL is the generally the driver for BMP implementation in the watershed. By using the existing TMDL schedule, the EWMP implementation schedule is highly aggressive and meets the requirement to be as short as practicable. The Harbor Toxics TMDL includes consideration of mercury and legacy pollutants in water, sediment, and fish tissue. These hydrophobic compounds bound tightly to the soil and organic particles. Nearly the entire mass load of the legacy pollutants is bound to the suspended solids. Additionally, the TMDL will be used as the model for compliance scheduling for total nitrogen and total phosphorus, because the nutrient concentrations are generally correlated with sediment just as with the OC and PCB constituents, as the runoff mobilizing sediment simultaneously mobilizes nutrients present in the soil matrix and bound to the soil particles. Furthermore, loading is greatest during storm conditions and the infiltration BMPs implemented to control metals are expected to control nutrients. The nutrient allocations are expressed as annual load, which is largely the loading during storm events. Therefore, the compliance schedule for Category 1C WBPCs will specifically follow the Harbor Toxics TMDL. # 2.3.3 WBPCs Classified in Group A Group A WBPCs are in the same class as the SGR Metals TMDL WBPCs and will be addressed by the control measures implemented to achieve compliance with waste load allocations (WLAs). Therefore, it is proposed that 303(d)-listed WBPCs of the same class as the SGR Metals TMDL WBPCs will be linked to the compliance schedule established in the SGR Metals TMDL Implementation Plan. The metals schedule is applied to WBPCs where metals are listed or data supports their listing for water bodies not originally included in the SGR Metals TMDL. The RAA will be used to demonstrate compliance for WBPCs. Control measures implemented to achieve the targets for the SGR Metals TMDL will also address other WBPCs that are associated with sediment removal. Implementation of control measures to treat the limiting pollutant, zinc, may also treat WBPCs not associated with sediment removal. For example, infiltration type BMPs will provide treatment for all constituents. Other WBPCs are assumed to be watershed conditions not associated with the MS4. PAHs, cyanide, diazinon, and TDS are included in the SGR Metals TMDL schedule as these constituents will be controlled by the infiltration BMPs for wet weather and activities to control non-storm water discharges. The dioxin listing for the SGR Estuary is in the same class of constituent as legacy pollutants addressed by the Harbor Toxics TMDL. Therefore, dioxin is assigned the Harbor Toxics TMDL schedule. The watershed loading of sediment is used as a surrogate for watershed toxics loading in the RAA, which is the same mechanism used to simulate particle associated metals loading. Therefore, the 303(d)-listed WBPCs that are in the same class as the SGR Metals TMDL WBPCs will be linked to the compliance schedule established in the SGR Metals TMDL Implementation Plan. # 2.4 WBPCS CLASSIFIED IN GROUP B Indicator organisms (bacteria) are the sole Group B WBPC. Bacteria are not of the same class as the SGR Metals TMDL WBPCs, but to some degree, may be addressed by the control measures implemented to achieve compliance with the limiting Group 1 pollutant, zinc. A great majority of dry and wet weather samples collected from Los Angeles region waterways, including the SGR and its tributaries, exceed the receiving water limits for bacteria. Compliance with bacteria standards may involve additional controls beyond those determined necessary for zinc. Additional analyses may be necessary to fully define the bacteria compliance condition. The Basin Plan provides consideration of high flow suspension (HFS) of objectives in certain channelized receiving waters where greater than 0.5 inches of rain in a 24-hour period. Because the recreational beneficial use was shown to be unattainable for concrete lined channels, the bacteria objectives are suspended when flows increase beyond the trigger level associated with ta 24-hour storm of 0.5 inches or more. In addition, areas where bacteria TMDLs have been adopted include a set number of allowable exceedance days to reflect the fact that reference watersheds typically exceed bacteria objectives several days in a given year. Determination of the allowable exceedance days would follow the analysis performed in adopted Bacteria TMDLs in the basin. Monitoring results of the non-stormwater program will determine compliance for bacteria during dry weather. The scheduling of milestones and compliance for bacteria in the watershed should mimic the scheduling adopted in TMDLs developed for other areas of the Basin. A 25-year schedule for bacteria compliance similar to the Los Angeles River TMDL is proposed. The schedule matches the other TMDLs in the Basin. As part of the schedule, the number of allowable exceedance days should be determined. The installation of controls for the Metals TMDL compliance and addressing significant non-storm water flows would be the first phase of the bacteria compliance. After the controls necessary to meet the Metals TMDL WLAs are functional, additional controls as a second phase, if necessary, to meet the bacteria objectives in MS4 discharges would commence. As the Metals TMDL wet-weather compliance is 14 years, an additional 14 years is requested for the second phase of controls implementation to address bacteria over 28 years. However, to be consistent with the LA River Bacteria TMDL, the proposed 25-year compliance schedule would be a reasonable interpretation of short as practicable to address bacteria in the San Gabriel River Watershed. Due to the challenges associated with complying with bacteria limits, it is recommended that special consideration be taken when establishing the compliance schedule for bacteria. There are two key issues associated with establishing a compliance schedule for bacteria, as follows: - 1. **An extended timeline for compliance is necessary:** the LA River Bacteria TMDL provides a 25-year compliance schedule for dry and wet weather. The Regional Board has initiated a TMDL for bacteria in the San Gabriel Watershed. Presumably, the Regional Board will follow a similar path to development as the LA River TMDL. - 2. Allowable Exceedance Days are a TMDL implementation provision: bacteria TMDLs in the region include Allowable Exceedance Days, which allow on the order of 15 days of objective exceedances per year. While the RAA Guidelines encourage the EWMPs to use critical conditions similar to TMDLs in the region, the Basin Plan is clear that Allowable Exceedance Days are a TMDL implementation provision. It is assumed Allowable Exceedance Days will be a component of the Regional Board initiated TMDL. Note that the Allowable Exceedance Days could be incorporated into the TMDL such that they are *in addition to* the High Flow Suspension days. Most reaches in SGR Watershed are 303(d) listed for bacteria, however, bacteria is not in the same "class" as a TMDL in the watershed. The Regional Board has initiated a Bacteria TMDL for the San Gabriel watershed. Based on other TMDLs in the Los Angeles basin, a 25-year timeline is assumed for the EWMP. #### 2.5 WBPCS CLASSIFIED IN GROUP C Most of the WBPCs in Group C are of the same class as the SGR Metals TMDL WBPCs will be addressed by the control measures implemented to achieve compliance with the SGR Metals TMDL WBPCs. The exceptions are Category 3B WBPCs that are reflective of watershed pollution conditions and not necessarily reflective of MS4 discharge conditions. Therefore, it is proposed that Category 3A and 3C WBPCs be linked to the compliance schedule established in the SGR Metals TMDL Implementation Plan. WBPCs in Category 3B may be addressed by the control measures implemented to achieve compliance with the limiting pollutant, zinc, but are not assigned a specific schedule for compliance. The RAA will be used to demonstrate compliance for WBPCs. Table 2-3 Schedule of TMDL Milestones for the EWMP | | | | | | | | Complia | nce Dat | tes and | Complian | ce Miles | tone | | | | | |---|---|----------------------|---------|------|------|-------------------------|------------|-----------|-----------|------------|------------|-----------|------------|-----------------|------------|---------| | TMDL | Compliance
Goal | Weather
Condition | | | (Bol | ded numbe | ers indica | ted miles | stone dea | adlines wi | thin the c | urrent Pe | ermit term | n) ¹ | | | | | | | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2020 | 2023 | 2024 | 2026 | 2028 | 2030 | 2032 | 2036 | | San Gabriel River
Metals and | % of MS4 | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Impaired Tributaries Metals and Selenium TMDL | % of MS4
area Meets
WQBELs ² | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Dominguez
Channel and | | | 12/28 | | | | | | | | | | | | 3/23 | | | Greater Los Angeles and Long Beach Harbor Water Toxic Pollutants TMDL | Meet
WQBELs | All | Interim | | | | | | | | | | | | Final | | | Los Angeles Area
Lakes TMDLs for
Puddingstone
Reservoir and
Santa Fe Dam
Park Lake | Meet
waste
load
allocations
(WLAs) | All | | | | o not conta
MS4 Perm | | | | | | edule. Th | ne Permit | : (Part V | I.E.3.c, p | og. 145 | ¹The Permit term is assumed to be five years from the Permit effective date or December 27, 2017. ²Water Quality Based Effluent Limitations Table 2-4 Compliance Schedule for WBPCs in the EWMP | | Compliance | | | | | | Compli | ance Da | tes and | Complia | nce Miles | stone | | | | | |---|-----------------------|----------------------|------------------|------|-------|----------|------------|-----------|----------|-----------|-----------|-----------|------------|-----------------|------|------| | Constituent | Schedule | Weather
Condition | | | (Bold | led numb | ers indica | ated mile | stone de | adlines w | ithin the | current P | ermit terr | n) ¹ | | | | | Source | | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2020 | 2023 | 2024 | 2026 | 2028 | 2032 | 2036 | 2040 | | 0 | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Copper | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | l and | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Lead | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | 7' | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Zinc | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | On death are | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Cadmium | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | NP at a 1 | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Nickel | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Mercury, Total
(N. Fork Coyote | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Creek and Walnut
Creek Wash) | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Selenium | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Selemum | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Total Nitrogen | Harbor
Toxics TMDL | Annual | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Total Phosphorus | Harbor
Toxics TMDL | Annual | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Total Mercury
(MS4 discharges to
Puddingstone
Reservoir) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Polychlorinated
Biphenyl (PCB)
(Sediment) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | PCB (Water) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | | Compliance | | | Compliance Dates and Compliance Milestone (Bolded numbers indicated milestone deadlines within the current Permit term) 1 | | | | | | | | | | | | | |--|------------------------|-------------------|------------------|--|-----------|--------------|------------|--------------|-----------|-----------|------------|-----------|-----------|-----------------|------|------| | Constituent | Compliance
Schedule | Weather Condition | | | (Bold | led numb | ers indica | ated mile | stone de | adlines w | ithin the | current P | ermit ten | m) ¹ | | | | | Source | | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2020 | 2023 | 2024 | 2026 | 2028 | 2032 | 2036 | 2040 | | Chlordane
(Sediment) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Chlordane (Water) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Dieldrin (Sediment) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Dieldrin (Water) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Dichloro-diphenyl-
tricloroethane
(DDT) (Sediment) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | DDT (Water) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Bacteria (Indicator | Group 2 | Dry | | | | | | 30% | | | 70% | | | 100% | | | | Organisms) | Group 2 | Wet | | | | | | 10% | | | 35% | | 65% | | | 100% | | PAH | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | FAII | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Cyanide | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Cyanide | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Ammonia | Not an MS4
Source | All | LACSD I | mplemen | tation of | nitrificatio | on and de | enitrificati | ion addre | esses con | trol of am | monia. | | | | | | Diazinan | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Diazinon | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | TDS | SGR Metals
TMDL | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Sulfate | SGR Metals
TMDL | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Chloride | SGR Metals
TMDL | Dry | | | | | | 30% | 70% | 100% | | | | | | | | Alpha-Endosulfan | SGR Metals
TMDL | Dry | | | | | | 30% | 70% | 100% | | | | | | | | MBAS | SGR Metals
TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | Lindane | SGR Metals | Dry | | | | | | 30% | 70% | 100% | | | | | | | | | Compliance | | | | | | Compli | ance Da | ites and | Complia | nce Mile | stone | | | | | |---------------------------------|-----------------------|----------------------|------------------|---|------------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------------|------|------| | Constituent | Schedule | Weather
Condition | | | (Bolo | led numb | ers indica | ated mile | stone de | adlines w | ithin the | current P | ermit ten | n) ¹ | | | | | Source | | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2020 | 2023 | 2024 | 2026 | 2028 | 2032 | 2036 | 2040 | | | TMDL | Wet | | | | | | 10% | 35% | 65% | | 100% | | | | | | 2,3,7,8-TCDD
(Dioxin) | Harbor
Toxics TMDL | All | 12/28
Interim | | | | | | | | | | | 3/23
Final | | | | Benthic Macro-
invertebrates | None | All | Reflective | flective of a condition of pollution, not necessarily a result of MS4 discharge | | | | | | | | | | | | | | Dissolved Oxygen | None | All | Reflective | e of a cor | ndition of | pollution | , not nec | essarily a | a result o | f MS4 dis | charge | | | | | | | рН | None | All | Reflective | Reflective of a condition of pollution, not necessarily a result of MS4 discharge | | | | | | | | | | | | | | Toxicity | None | All | Reflective | Reflective of a condition of pollution, not necessarily a result of MS4 discharge | | | | | | | | | | | | | ¹The Permit term is assumed to be five years from the Permit effective date or December 27, 2017. #### 2.6 INITIAL SOURCE ASSESSMENT Constituents were evaluated to determine if MS4 discharges could be a potential source. Many constituents are typically associated with MS4 discharges and additional investigation is not necessarily required to determine if they are a potential source to the receiving water. Metals, nutrients, and bacteria are commonly found in runoff from urban areas. Metals may be naturally occurring bound to soil and sediment movement by storms would increase the loading to the receiving waters. Automobile wear are a source of metals, with tires wear most influenced by zinc, lead, and copper, while brakes were is associated with copper. Metal architectural features and building materials may contribute zinc, copper, lead or other metals to the MS4 system by leaching during storm events. Other NPDES discharges may contain metals. Where historic soil contamination exists, legacy pollutants such as Polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides may be found in urban stormwater. However, for some constituents such as selenium, cyanide, and ammonia, MS4 discharges are either not known as significant sources of the constituent or other potential sources are more likely. In the absence of outfall data, it would be inappropriate to directly link any one jurisdiction to specific pollutants. Ammonia exceedances are likely being addressed through NPDES permit limits and associated treatment upgrades for the wastewater reclamation plants. The primary source of ammonia is wastewater treatment plant discharges, and controlling their effluent through their individual NPDES permit is the appropriate method to address receiving water exceedances. Chloride, total dissolved solids (TDS), and sulfate are all salts that could be naturally occurring in the SGRWMA. The majority of the exceedances occur in one reach (Puente Creek) as indicated by the MS4 annual reports. During storm events, salts are significantly diluted by stormwater runoff. Dry weather is generally the only time exceedances are observed. Further investigation of the source of exceedances is warranted to assess if non-stormwater discharges from MS4 systems are a potential source and may be conducted by a special study or addressed in the RAA. ### 2.6.1 Dischargers There are many facilities in the San Gabriel River Watershed that have NPDES permits to discharge industrial wastewater and stormwater. **Figure 2-1** shows the location of NPDES-permitted dischargers within the USGR EWMP area. The California Integrated Water Quality System was used to identify all currently active, or active within the past three years, NPDES permittees within the watershed. There are approximately 18 NPDES major dischargers, minor permits, and dischargers covered under general permits, and 150 dischargers covered under the industrial stormwater permit. Figure 2-1 Location of NPDES-permitted Dischargers within the USGR EWMP Area ### 2.6.2 TMDL
Report and Staff Report The TMDL for metals and selenium for the San Gabriel River and Impaired Tributaries was established by the USEPA in 2007. The source assessment section of the TMDL documentation divides sources into point sources, which includes "discharges for which there are defined outfalls such as wastewater treatment plants, industrial discharges, and storm drain outlets," and nonpoint sources from various land uses and source activities not regulated through NPDES permits (USEPA, 2007). Major findings of the source assessment for point sources, relevant to the USGR EWMP area, included the following (USEPA, 2007) (RWQCB, 2013). ### **Municipal Stormwater:** Municipal storm water contributes sources of metals to the San Gabriel River from automobile brake pads, vehicle wear, building materials, pesticides, erosion of paint and deposition of air emissions from fuel combustion and industrial facilities. A 2007 study from the Brake Pad Partnership determined that up to half of the anthropogenic copper discharged to the San Francisco Bay could be linked to brake pad debris. In 2010, SB 346 was signed, with provisions to limit the amount of copper used in brake pad material. #### **Industrial Stormwater:** Potential metals loading during dry weather are considered to be low, as non-storm water discharges are prohibited or controlled by NPDES permits. However, one study by *Stenstrom et al. (2005)* showed that loading of copper, lead, and zinc from industrial facilities may exceed applicable California Toxics Rule (CTR) standards. Runoff from metal plating, transit, and recycling facilities are considered to have a high potential for metals loading. ### **Construction Stormwater:** One study by Raskin et al. (2004) showed that there is a potential for metals loading due to leaching of metals from building materials and construction waste during wet weather events. Potential metals loading during dry weather are considered to be low, as non-storm water discharges are prohibited or controlled by NPDES permits. ### **Publicly Owned Treatment Works:** Three water reclamation plants (WRPs) discharge to water bodies within the USGR EWMP area. A description of each facility taken from the TMDL Report and updated by the LACSD is provided below: #### Pomona WRP - Discharges tertiary-treated effluent to the South Fork of San Jose Creek. The influent to the Pomona WRP is a combination of municipal and industrial wastewater. - O During dry weather, a majority of the treated effluent is reclaimed for landscape and crop irrigation, as well as for industrial processes. # San Jose Creek WRP - Permitted to discharge 100 Million gallons per day (MGD) of tertiary-treated effluent via five permitted discharge points. The influent to the San Jose Creek East and West WRPs is a combination of municipal and industrial wastewater. - Discharge No. 001 to San Gabriel River Reach 1 is a combination of San Jose Creek East and West WRP effluent and in 2014 was the primary - discharge point for San Jose Creek West WRP. The outfall is eight miles south of the plant near Firestone Blvd. The river is concrete-lined from the discharge point to the Estuary, about nine miles downstream. A turnout located approximately midway down the pipe is used to divert reclaimed water to spreading grounds. - Discharge No. 001A to the unlined portion of the San Gabriel River Reach 2 is a combination of San Jose Creek East and West WRP effluent. The outfall is located near the turnout to the spreading grounds, which is near Whittier Blvd. - Discharge No. 001B to the unlined portion of the San Gabriel River Reach 2 is a combination of San Jose Creek East and West WRP effluent. The outfall is located mid-way between Discharges 001A and 001 near Slauson Blvd. Discharge is expected to begin in 2015. - O Discharge No. 002 to San Jose Creek from San Jose Creek East WRP is used for groundwater recharge at the San Gabriel Coastal Spreading Grounds. San Jose Creek is unlined from the discharge point to the San Gabriel River. In 2014, this outfall was the primary discharge point for the San Jose Creek East WRP. - Discharge No. 003 delivers treated effluent to the unlined portion of the San Gabriel River Reach 3 as well as the San Gabriel Coastal Spreading Grounds. - The 2015 San Jose Creek WRP NPDES permit is expected to permit two additional discharge points to the unlined San Gabriel River Reaches 4 and 5 in the area of the Santa Fe Dam. #### Whittier Narrows WRP - Discharge No. 001 discharges to the river about 700 feet upstream from the Whittier Narrows Dam. - The tertiary-treated effluent generally flows down the river to the San Gabriel River Spreading Grounds. The influent to the Whittier Narrows WRP is a combination of municipal and industrial wastewater. # 3 Watershed Control Measures The Permit requires the identification of Watershed Control Measures, which are strategies, institutional measures, and BMPs³ that will implemented through the EWMP individually or collectively at a watershed-scale to address Water Quality Priorities. This section provides an overview of the categories of BMPs used to develop the USGR EWMP (and simulated by the RAA), summarizes existing and planned structural BMPs, and describes the institutional control measures that will be implemented including customization of MCMs. In addition, details are provided for 10 "signature" (or example) regional projects that have been identified in the USGR EWMP. The objectives for the watershed control measures as identified in the Permit are as follows: - Prevent or eliminate the non-storm water discharges to the MS4 that are determined to be a source of pollutants to the MS4 or receiving waters. - Implement pollutant controls necessary to achieve interim and final WQBELs and RWLs at the corresponding compliance schedules. - Ensure the discharges from the MS4s do not cause or contribute to RWLs. A network of control measures was selected for the EWMP Implementation Plan using a combination of existing information and modeling. The approach for selecting the control measures included the following steps: - 1. Summarize existing structural and institutional BMPs (as described in this section) - 2. Identify a menu of potential control measures to be considered (as described in this section) - 3. Evaluate effectiveness of potential BMPs on receiving water quality and jurisdictional loading with modeling (as described in Section 4) - 4. Identify the combination and sequencing of BMPs to be included in the EWMP Implementation Plan to achieve interim and final water quality objectives (described in Section 5) As outlined in Section 1, by definition the USGR EWMP shall include multi-benefit regional projects that retain the storm water volume from the 85th percentile, 24-hour storm for the drainage areas tributary to the multi-benefit regional projects. Additionally, the watershed control measures should incorporate effective innovative technologies, approaches and practices, and includes green infrastructure. This section highlights multi-benefit regional projects to be implemented by the EWMP, along with innovative green infrastructure BMPs. ### 3.1 INTRODUCTION TO CATEGORIES OF CONTROL MEASURES Two overarching categories of BMPs will be discussed throughout the EWMP: • **Structural BMPs:** these BMPs retain, divert or treat stormwater and/or non-stormwater, and can either be distributed throughout the watershed or sited regionally. Page 30 ³ In this EWMP, the terms "control measures" and "best management practices (BMPs)" are used interchangeably. • **Institutional BMPs:** these BMPs encompass the Minimum Control Measures (MCMs) outlined in the permit, other non-structural BMP's, and any other source control measures, such as community education programs. Furthermore, the three main categories of structural BMPs included in the EWMP include low-impact development, green streets, and regional projects, as defined below: • Low-Impact Development (LID): Distributed structural practices intended to treat runoff relatively close to the source and typically implemented at a single-parcel- or few-parcel-level (normally less than 10 tributary acres) (Figure 3-1). Figure 3-1 Conceptual Schematic of LID Implemented at the Parcel Scale • Green Streets and Green Infrastructure: Distributed structural practices intended to treat runoff within public transportation rights-of-way (normally less than 10 tributary acres) (Figure 3-2). • Regional BMPs⁴: Constructed structural practices intended to treat runoff from a contributing area of multiple parcels (normally on the order of 10s or 100s of acres or larger) (Figure 3-3). Figure 3-3 Conceptual Schematic of Regional BMP ⁴ Note not all regional BMPs are necessarily able to capture the 85th percentile, 24-hour storm. The subset of regional BMPs that can capture the 85th percentile, 24-hour storm are referred to as "Regional EWMP Projects" herein. **Table 3-1** summarizes the types of BMPs that were included in the EWMP. Table 3-1 Types of BMPs Considered in the EWMP | Cat | egory | Туре | |--------------------------|---------------|--| | | | LID ordinance (new/redevelopment) | | | Low Impact | Existing and Planned BMPs | | | Development | Residential LID | | Structural (Section 3.2) | | LID on public parcels (retrofits) | | , | Green Streets | Green streets | | | Degional | Regional BMPs on public parcels (Tier 1, Tier 2, and Tier 3) | | | Regional | Regional BMPs on private parcels | | Institutional (Se | ection 3.3) | Minimum control measures and enhanced minimum control measures | #### 3.2 STRUCTURAL CONTROL MEASURES Constructed BMPs will perform the majority of required pollutant reduction for the USGR EWMP. To implement control measures efficiently at the watershed-scale and support compliance tracking, structural BMP programs will be an important element of EWMP implementation. This section
describes the structural BMP programs necessary to implement the EWMP. Detailed fact sheets of the structural control measures are provided in **Appendix B-2**. Both regional projects and regional EWMP projects are included in this EWMP and categorized as described below: - Tier 1 Regional Projects: Select subset of regional BMPs identified during the regional BMP selection process. Tier 1 regional BMPs have been modeled explicitly utilizing SUSTAIN (System for Urban Stormwater Treatment Analysis and Integration). 10 Tier 1 regional BMPs have been included in the EWMP as "signature" or example regional EWMP projects. - Tier 2 Regional Projects: Potential regional projects or regional EWMP projects that are located on the other parcels owned by the Group Members. - Tier 3 Regional Projects: Potential regional BMPs located on school properties (if elected by the individual Group Member) and public parcels owned by other entities identified during EWMP implementation. - Private Regional Projects: Potential regional projects located on privately-owned land. # 3.2.1 Regional Control Measures on Public Parcels The Permit places heavy emphasis on regional projects as multi-benefit components of the EWMP. The compliance determination of the Permit specifies that retention of the stormwater volume associated with the 85th percentile, 24-hour storm (design storm) achieves compliance with final TMDL RWLs and WQBELs for upstream areas. Regional projects that achieve this specification are referred to as "Regional EWMP Projects". Regional projects are centralized facilities located near the downstream ends of large drainage areas (typically treating 10s to 100s of acres). Unlike LID and green streets, runoff is typically diverted to regional projects after it has already entered storm drains, but before entering the receiving waters. Routing offsite runoff to public parcels (versus treating surface runoff near its source) often allows regional BMPs to be placed in the cost-effective locations with the best available BMP opportunity. Regional projects have access to large volumes of runoff from extensive upstream areas, and thus can provide a cost-effective mechanism for infiltration, pollutant reduction, and augmentation to water supply. # 3.2.1.1 Regional EWMP Project Screening Methodology An initial screening methodology was developed to identify preferred project sites for regional projects. Criteria were established in order to rank possible sites based on project site constraints and preferred project site attributes. Geographic information system (GIS) spatial analysis was utilized in order to process and compare data layers among the potential sites. #### Site Identification Potential project sites were identified using two main sources of information; 1) the Los Angeles County Parcel Boundary Map (Parcels identified by Assessor Identification Number (AIN), available from the Los Angeles County of the Assessor) and 2) the County of Los Angeles GIS shapefile of land use types (available at http://egis3.lacounty.gov/dataportal/2014/07/07/la-county-land-types/). The land use file contains land areas such as parks, recreation centers, sports complexes, schools, and open spaces. The parcel file was used to define individual parcels and identify possible site locations that are not in the land use file. Project sites contain one or more parcels that are linked by land use type and ownership. In this manner, parcels were grouped into their respective sites using the shape boundaries of the land use file and ownership information. Figure 3-4 illustrates an example of grouping multiple parcels into individual sites. Figure 3-4 Example of Two Public Parcels Grouped as One Site Site Containing Two Parcels is Grouped into One Site Using Land Use and Ownership Information ### **Initial Site Evaluation** GIS spatial analysis was performed on each individual project site. Multiple layers of data were processed using GIS and used to evaluate potential sites. **Figure 3-5** graphically illustrates the method used to develop the preliminary list of sites for regional projects. Because land acquisition for projects would significantly increase the cost, only parcels that are currently publicly owned were identified. More than 2,000 public parcels in the EWMP Group area were evaluated using the GIS spatial analysis. After grouping the parcels, sites smaller than half an acre were eliminated because they are considered impractical for constructing a large-scale, regional project. The BMP footprint and therefore the ability to capture large volumes of runoff would be severely limited with sites smaller than half an acre... To evaluate the potential for stormwater recharge within the watershed, a site suitability analysis was conducted, using several GIS data layers. These layers are summarized in **Table 3-2** and presented in **Figure 3-6** through **Figure 3-14**. Each layer used in the spatial analysis was defined as one of the following types: (1) constraints, (2) preferences, and (3) flags. The layer types are defined as follows: - Constraints Layers used to filter parcels from further consideration by assigning a YES/NO value. - Preferences Layers used to evaluate expected effectiveness of potential parcel and produce a relative rank of parcels by assigning a score of 1-5. - Flags Layers that could affect the feasibility but are not considered site constraints until further site investigation is conducted and are assigned as flags. . Figure 3-5 Initial Screening Methodology Public Parcels in **USGR EWMP** Group Area Land Use and Step 1: Ownership Information Grouping of Constraint: Parcels into Step 2: · Greater than 0.5 acres Sites Site Constraints: Bedrock Constraints Step 3: • Slope > 20% Analysis • Significant Ecological Areas Landfills • Shallow Groundwater (<20 ft.) Preferences: Numeric Topography Step 4: Soil Type Scoring • Distance to Major Receiving Waters Preferences: Site-Specific · Position within Watershed/Urbanized Step 5: Observation Drainage Area VOC/Nitrate Plumes (flagged) High Liquefaction Potential (flagged) Preferred Land Use (e.g. Parks) · Prefer Sites with Vacant Land/Open Space **Preliminary List of Sites** Page 36 Table 3-2 GIS Data Layers and Descriptions | Layer | Source | Description | Туре | |--|--|---|--| | Bedrock | California Geological
Survey | areas of bedrock where infiltration is severely limited | Constraint | | Methane-
Producing
Landfill | County of Los Angeles
Department of Public
Works, April 2012 | disposal sites that
historically accepted
degradable refuse
material | Constraint | | Significant
Ecological Area
(SEA) | County of Los Angeles
Planning | land that contains
irreplaceable biological
resources | Constraint | | Depth to
Groundwater | Main San Gabriel Basin
Watermaster, July 1997 | depth to groundwater | Constraint if
depth to
groundwater
is less than
20 feet | | Ground Surface
Slope | USGS Digital Elevation
Model (DEM) | 30-foot horizontal, 5-
foot vertical resolution | Constraint if slope greater than 20%, Preference if slope less than 20%, | | Distance to
Major Receiving
Waters | Calculated using County's SDS Channels Shapefile | horizontal distance to nearest receiving water | Preference | | Soil Infiltration
Rate | County of Los Angeles
Department of Public
Works, Tetra Tech | infiltration rate | Preference | | Groundwater
Contamination | MWH Hydrogeologic Assessment of Continuous Recharge and Extraction of Recycled Water in the Main San Gabriel Basin, January 2011 | existence of VOCs or
nitrate in groundwater
greater than the
Maximum Contaminant
Level (MCL) | Flag | | High
Liquefaction
Potential | California Geological
Survey Seismic Hazard
Zonation Program, 1999 | areas of historic
occurrence of
liquefaction as defined
in Public Resource
Code Section 2693(c) | Flag | Figure 3-6 – Soil Infiltration Rates Figure 3-8 – RAA Subwatersheds and Flow Direction In the Upper San Gabriel River watershed, most subwatersheds tend to drain towards a major receiving water body, such as the San Gabriel River or San Jose Creek. Therefore, it is reasonable to assume that if a site is closer to a major receiving water body, the area draining towards the site (i.e. contributing drainage area) is likely to be larger. Conversely, if a site is far from a major receiving water body, the contributing drainage area to the site is likely to be smaller. For this reason, the distance of a site to a major receiving water body was used as an indicator of the potential contributing drainage area to the site. If the contributing drainage area to a site is larger, the site has more potential to capture and infiltrate large quantities of runoff. Therefore, sites closer to a major receiving water body were considered preferable. Figure 3-9 – Depth to Groundwater (<20 ft. BGS) Figure 3-11 – Groundwater Contamination Figure 3-13 – Methane-Producing Landfills Numeric scoring was performed by discretizing a 200-foot regular Cartesian grid over the EWMP Group area. The size of the grid was driven by the resolution of the coarsest data layer, the Digital Elevation Model (DEM). The grid was generated using the NAD 1983 State Plane California V FIPS 0405 Feet projection. The method used for numeric scoring included the following steps: - 1. Raw values (e.g percent for slope, inches per hour for soil infiltration, and feet for distanced to major receiving waters) were calculated
by spatially joining grid cell centroids to each layer. - 2. Raw values were indexed to the following scoring matrix in **Table 3-3**: Table 3-3 Scoring Matrix for Regional EWMP Project Initial Screening | | | | Numeric Sco | re | | |--------------------------------|-------|----------|-------------|----------|--------| | Layer | 1 | 2 | 3 | 4 | 5 | | Soil Infiltration Rate (in/hr) | 0-0.1 | 0.1-0.25 | 0.25-0.5 | 0.5-1 | >1 | | Distance to conveyance (miles) | >2 | 1-2 | 0.5-1 | 0.25-0.5 | 0-0.25 | | Ground Surface Slope (%) | 15-20 | 10-15 | 5-10 | 2.5-5 | 0-2.5 | - 3. The total score for each cell was determined by averaging the three scores for each of the preference layer types, yielding a total score of 1-5. Note that constraints layer types are not scored, but were assigned YES for true or NO for false, i.e., indicating the presence of a particular constraint. - 4. Each site was assigned a score based on the grid cell that the sites centroid was located in. The numeric scoring was used to help identify sites that represented relatively favorable areas for stormwater recharge, consisting of sites with good soil infiltration rates (greater than 0.5 inches per hour), preferable slopes (less than 5 percent), and sites closer to major receiving waters (within half of a mile). The resulting scoring map is presented in **Figure 3-15**. Figure 3-15 – Numeric Scoring Process Following the GIS spatial analysis, sites were further evaluated using aerial imagery. Sites consisting of infeasible land use types, including natural and wildlife areas, historic sites, hospitals, in-channel parcels, and existing spreading grounds were not considered for further analysis. Sites were checked visually to ensure that the contributing drainage area to the site appears to be primarily from the MS4. Sites were checked to determine if existing development (such as buildings at a park) would significantly impact the space available to construct a regional project. ### 3.2.1.2 Example Regional EWMP Projects Based on the extensive initial screening process and through coordination with the Group Members, 10 "signature" or example regional EWMP project sites were selected for conceptual design and inclusion in the EWMP plan. These regional EWMP projects retain and infiltrate or beneficially reuse all stormwater runoff from the 85th-percentile, 24-hour storm event for the drainage area tributary to the project. Additional information on the selection and conceptual design of the 10 example regional EWMP projects is provided in **Appendix B-1**. Additional potential regional projects are listed in **Appendix C-8**. The example regional EWMP project sites are listed in **Table 3-4** and presented in **Figure 3-16**. Operations and maintenance considerations and evaluation of multi-benefit features, such as groundwater recharge, improvements to enhance existing facility user experience, and educational outreach opportunities, will be key issues to be addressed. Preliminary sketches and conceptual site layouts have been developed for each project (**Appendix B-1**). Table 3-4 Regional BMP Project Sites | Regional EWMP Project Site | Address | |-------------------------------------|--| | Finkbiner Park | 160 N. Wabash Ave, Glendora, CA 91741 | | Bassett Park | 510 Vineland Avenue, La Puente, CA 91746 | | Kahler Russell Park | 735 North Glendora Avenue, Covina, CA 91724 | | San Angelo Park and Vacant Lot | 245 San Angelo Avenue, Bassett, CA 91746 | | Allen J Martin Park | 14830 East Giordano Street, La Puente, CA 91744 | | Barnes Park | 3251 Patritti Avenue, Baldwin Park, CA 91706 | | La Puente Park | 15538-15598 E Temple Ave, La Puente, CA 91744 | | Adventure Park (aka Gunn Ave. Park) | 10130 S. Gunn Avenue, Whittier, CA 90605 | | Downtown Properties | Foothill Blvd. and Glendora Ave., Glendora, CA 91741 | | San Jose Properties | Burnaby Dr, Lawford St., Glendora, CA 91741 | **Regional EWMP** Downtown Properties Projects Finkbiner Park San Jose Properties Legend Regional EWMP Project Sites Kahler Russell Park Barnes Park San Angelo Park Bassett Park Allen J Martin Park La Puente Park 5,000 10,000 Feet Document: \Uspas1s01\munn\Clients\Los Angeles County DPW\On-Call Watershed & WQ Support\ 10503269 USGR EWMP\14 Electronic Files - Modeling\ GIS_MXDs\TopBMPSites.mxd Adventure Park Figure 3-16 Regional EWMP Project Sites The 10 example projects represent opportunities to capture and infiltrate stormwater and protect receiving waters. A conceptual level design was developed for each of the 10 example regional EWMP projects that include the selection of BMP type, preliminary sizing, configuration, and diversion pipeline alignment. The conceptual level designs include the following components, and each is discussed further below: - Preliminary geotechnical evaluation at each site - Preliminary evaluation of potential environmental constraints - Construction feasibility review - Cost estimates and project schedules #### Preliminary Geotechnical Evaluation Geotechnical evaluations have been conducted to verify site constraints such as bedrock, high groundwater, and clay and silt layers that may impact the feasibility of the regional EWMP project. These evaluations augment assumptions from the initial screening of all regional project sites. The results of these evaluations may be used to inform the level of effort required for a construction level geotechnical study. Boring logs from the geotechnical study are in included as **Appendix B-3** #### **Evaluation of Potential Environmental Constraints** A Programmatic Environmental Impact Report (PEIR) for County-wide watershed activities associated the Permit was developed by the County of Los Angeles Department of Public Works on behalf of the LACFCD. The Draft PEIR was circulated for public comment on January 21, 2015. Comments were due on March 16, 2015 and the PEIR is expected to be certified in mid-May. Copies of the draft PEIR can be found at www.LACoH2Osheds.com. An initial study of potential environmental considerations for the example regional EWMP projects is summarized in **Appendix B-4.** The PEIR evaluates the major environmental effects of implementing proposed EWMP projects from a broad perspective; this evaluation is a program-level analysis. While the Permittees are developing the design, construction, and operation details of the projects that would be included in the EWMPs, these project details are not the focus of this PEIR. Instead, the PEIR frames the nature and magnitude of the expected environmental impacts associated with these proposed EWMP projects and identifies program mitigation measures to reduce the impacts of the projects as proposed. More detailed project-level analyses of individual EWMP projects may be conducted separately by each of the Permittees as required by California Environmental Quality Act (CEQA). The PEIR can provide a basis for the discussion of the environmental documents, assessments and permitting required for the implementation of priority projects. The PEIR can be used by the local implementing agencies to streamline environmental review of individual EWMP projects. The implementing agency may determine that a more detailed, project-level analysis is required, or may determine some projects to be exempt from CEQA. For non-exempt projects, project-level CEQA review will be conducted separately by the appropriate implementing agency. The separate environmental review of individual projects will evaluate site-specific impacts and incorporate feasible mitigation measures and alternatives (CEQA Guidelines, Section 15168[c]). ## Construction Feasibility Review Preliminary engineering considerations have been developed to determine the feasibility of construction the proposed projects. Based the information gathered, best professional judgment, and technical assumptions, a preliminary sizing and placement of the BMP(s) have been provided for each site (Appendix B-1). Available as-built drawings of stormwater infrastructure have been reviewed for the purposes of confirming technical assumptions to be used in the conceptual designs, such as slope, depth, and size of storm drains. ## 3.2.1.3 Additional Potential Regional Projects (Tier 2 and Tier 3) Additional potential (Tier 2) regional projects were identified using a detailed spatial analysis, beginning with an initial spatial analysis of constraints, and culminating with an identification of publically-owned parcels potentially suitable for regional projects. Certain Group Members also elected to consider regional projects on parcels owned by other public entities such as local school districts and transportation authorities (Tier 3 regional projects). Tier 2 and #### Regional Project Program Highlights: - Retrofits public parcels with regional projects - Can provide community cobenefits (recreation, groundwater recharge, habitat) - Maximizing infiltration rate, runoff diversion rate, and drainage area will maximize BMP efficiency #### **Assumptions:** Public parcels identified via desktop screening and vetted by Group will be retrofit to treat runoff diverted from upstream (offsite) drainage area. Assume infiltration basins where feasible. Tier 3 candidate sites represent important components of the compliance strategy, although the massive quantity of parcels required more generalized analysis than the 10 signature sites. Section 3.5 describes the Tiers selected for inclusion by each Group Member and the associated analysis. A list of potential regional projects is provided in **Appendix C-8.** ## 3.2.2 Regional Control Measures on Private Parcels Additional control measures required beyond the opportunities identified in the preceding subsections are identified as regional control measures on private parcels. Because specific opportunities for land acquisition and/or public-private partnerships cannot be confirmed
during of timeframe the **EWMP** development, the **RAA** modeling described in Section 4 report a conceptual volume of infiltration basins ## Private Regional Project Program Highlights: - Retrofits private parcels with regional projects - Requires land acquisition or public/private partnerships - · Parcel identification and prioritization required - Maximizing infiltration rate, runoff diversion rate, and drainage area will maximize BMP efficiency #### **Assumptions:** Infiltration basins implemented at or near subwatershed outlets required in each subwatershed to meet the numeric goal. Modeling assumptions for additional regional control measures on private parcels will follow the assumptions presented for subsurface infiltration basins, as discussed in Section 3.5 and presented in **Appendix C-1**. #### 3.2.3 LID Programs A key element of the structural BMP strategy for the USGR EWMP is to assume that LID will be distributed throughout the watershed. LID can provide multiple benefits to the surrounding community, including increasing property values, landscape value and sense of well-being, increased safety, and reducing crime rate (Ward et al. 2008; Shultz and Schmitz 2008; Wolf 2008; Northeastern Illinois Planning Commission 2004; Hastie 2003; Kuo 2003; Kuo et al. 2001a; Kuo et al. 2001b; Wolf 1998) as well as the reduction in reliance of imported water, a key issue in Southern California. For the purposes of this EWMP, it is assumed that LID is defined as a series of distributed structural practices that capture, infiltrate, and/or treat runoff at the parcel scale. Common LID practices include bioretention, permeable pavement, and other infiltration BMPs that manage runoff at the source. Rainfall harvest practices such as cisterns can also be used to capture rainwater that would otherwise run off a parcel and offset potable water demands. **Appendix B-2** provides fact sheets explaining several potential LID practices. For the RAA, the LID BMPs are designed to capture the 85th percentile storm from the parcels on which they are located. While individually these features are not large, when deployed across numerous parcels throughout the watershed, they can collectively make significant progress towards improving water quality and achieving WQOs. Since the vast majority (nearly 90 percent according to RAA inputs) of runoff from the developed portion of the watershed is generated from impervious areas on parcels, LID is a natural choice as a key strategy to address imperviousness. This strategy can be viewed as the "first line of defense" due to the fact that the water is treated on-site before it runs off from the parcel and travels downstream. Especially for areas where regional opportunities do not exist downstream, LID is an effective strategy that will only be limited by the extent of implementation. The following paragraphs provide an overview of each specific LID strategy. **Appendix C-3** provides an analysis that defines the overall opportunity for and extent of implementation for each individual element. The approach/assumptions for representing LID BMPs in the RAA is described in Section 4.3. #### LID Ordinance (New/Redevelopment) The Permit specifies adoption of LID ordinances requiring mitigation of newly developed and redeveloped areas. As such, redevelopment LID projects will take existing impervious surfaces offline over time – greatly improving the effluent water quality and materially advancing EWMP objectives. The key advantage to the Group members is that these projects are 100 percent funded by the developer. As such, the RAA assumes that a certain percentage of parcels is redeveloped over the course of the compliance period and reflects the benefits of the LID ordinance. **Figure 3-18** shows areas that are subject to redevelopment, per the WMMS land use data As this program matures it is important to maintain a robust set of engineering standards to ensure that BMPs are being sized, sited, and designed properly. The USGR EWMP Group will retain the responsibility of reviewing and approving calculations, engineering plans, and specifications provided by developers. Ultimately, a strong LID ordinance program provides an inexpensive strategy to continually make progress towards EWMP goals. redevelopment occurs throughout the watershed, it will be important for the USGR EWMP Group to track BMP implementation and compare to the projections made by the RAA. Figure 3-17. Biofiltration in a Redeveloped Shopping Center Parking Lot ## LID Ordinance Program Highlights: - Ongoing water quality improvement program - Important to account for water quality benefits - Costs to Group agencies minimal - Requires strong standards and oversight - Benefit based on number of redeveloped parcels #### **Assumptions:** BMP implementation to capture 85th percentile storm on redeveloped parcels, based on land use-specific historical redevelopment growth rates reported by Los Angeles Bureau of Sanitation (rates vary from 1.65% of commercial land use to 3.74% of industrial land Note that while LID on new/redevelopment is a structural BMP, the MS4 Permit categorizes it as an MCM, since the control measures are implemented by developers. Unincorporated Glendora Los Angeles County Puente Unincorporated Industry San Unincorporated Bernardino County **Redevelopment Opportunity Residential LID Opportunity City Boundaries County Boundaries** Orange **USGR EWMP Area** County Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, Copyright:© 2014 Esri Figure 3-18 Opportunities for Redevelopment and Residential LID #### Residential LID Accounting for approximately 14 percent of all developed impervious area in the watershed, residential parcels represent an important opportunity for LID implementation (**Figure 3-18** shows the extent of high-density residential land, per the WMMS land use data). Runoff from residential parcels is often directly connected to a curb and gutter or other conveyance system on the street. Based on input from the EWMP Group, the RAA assumes that a residential LID program will be initiated to encourage and incentivize residential homeowners to retrofit their properties with LID features. Treating runoff through a voluntary program at the residential parcel scale can significantly offset the need for regional or green infrastructure BMPs. A well-designed residential LID program thoroughly will engage individual homeowners to establish a sense of and ownership stewardship as thev transform small areas of their property into stormwater treatment elements. Incentive programs can potentially be aligned with existing water conservation programs such turf replacement or xeriscaping Partnering with key nonincentives. governmental organizations can be an effective strategy to rapidly developing an Figure 3-19. Residential LID Retrofit in the form of a Xeriscaped Infiltration Swale #### Residential LID Program Highlights: - Incentivizes installation of BMPs on residential land - Offsets more expensive BMPs downstream - NGO partners can help develop and operate program - Homeowner engagement and stewardship is critical - Benefit based on rate of adoption by homeowners **Assumptions**: Starting 2017, one percent of residential parcels per year in each jurisdiction (approximately 193 acres per year across the entire EWMP area) will be retrofit with BMPs to retain the 85th percentile storm effective program that includes community engagement and preparation of standard plans and procedures. As with the redevelopment ordinance program, BMPs implemented as part of this program will be tracked and compared to the projections made by the RAA. #### LID on Public Parcels (Retrofits) Although public parcels represent less than 1 percent of all impervious land use in the watershed, they provide key opportunities to implement LID on parcels where the USGR EWMP Group has domain. These opportunities provide several key advantages, including the ability to coordinate efforts with already-planned infrastructure upgrades (e.g., parking lot rehabilitations), avoidance of land acquisition costs, and the opportunity for public engagement and education. Sites that attract significant public traffic, such as libraries, City Hall, and parks can also provide excellent forums to demonstrate LID practices. Not only will these demonstrations help the USGR EWMP Group to achieve the goals of the EWMP, if done properly they can advance the Figure 3-20. Bioretention and Permeable Pavement at the Los Angeles Zoological Park public's understanding, acceptance, and support for these types of projects which will be critical for developing financial funding strategies for larger efforts (such as green streets and regional projects). **Figure 3-21** shows the public parcels that were considered for LID. ## **Public Parcel LID Program Highlights:** - Implements LID on public parcels through retrofits - Key opportunities for public education - Readily integrated into planned site rehabilitation - Can be leveraged to generate public support/funding - Small number of public parcels limits total impact #### **Assumptions:** Public parcels identified via desktop screening for slopes, groundwater, and soil contamination (2,270 acres in total) will be retrofit to treat onsite runoff from the 85th percentile storm. Unincorporated Glendora Los Angeles County Puente Unincorporated San Unincorporated Bernardino County **Screened Public Parcel Opportunities City Boundaries County Boundaries** Orange **USGR EWMP Area** County Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, Copyright:© 2014 Esri Figure 3-21 Opportunities for LID on Public Parcels #### Existing and Planned BMPs In addition to the above programs, the
EWMP incorporates ongoing structural BMP activities that have recently been or are currently taken place. An inventory of existing and planned structural BMPs within each jurisdiction was developed to account for these activities. Existing and planned BMPs were identified through a data request distributed to the USGR EWMP Group to identify BMPs within the EWMP area. In addition, a literature review was performed to identify further structural BMP projects that were not encompassed by the data request. The literature review included the following documents/sources: - Integrated Regional Watershed Management Plan (IRWMP) documents, - Notice of Intent (NOI), - 2011-2012 Annual Report, and - Online OPTI database (for planned BMPs). As with the other programs, it will be important to track project details such as BMP size, type, and drainage area to compare to the assumptions/performance used in the RAA. Appendix C-6 details the existing and planned structural BMPs. Figure 3-22. Biofiltration in a Parking Lot ## **Existing and Planned BMP Highlights:** - Accounts for ongoing or recent BMP activity - Projects will count as credit toward EWMP objectives as they are completed - Documentation of project details is key **Assumptions:** Includes projects implemented after 2011, as identified in the EWMP Work Plan #### 3.2.4 Green Streets Programs The Permit specifies that EWMPs should "incorporate effective technologies, approaches and practices, including green infrastructure." Rights-of-way along streets may be the most extensive opportunity for the USGR EWMP Group to implement green infrastructure BMPs on public land. In developed areas, curb and gutter in the road provides the primary means of conveying stormwater (and associated pollutants) directly to storm drain inlets and receiving waters. Green streets provide an opportunity to intercept this runoff prior to entering the MS4 and treat it within the public right-of-way. Green streets have been demonstrated to provide "complete streets" benefits in addition to stormwater management, including pedestrian safety and traffic calming, street tree canopy and heat island effect mitigation, increased property values, and even reduced crime rates. Figure 3-23. A Residential Green Street As with LID, green streets tend to be distributed practices that are deployed throughout a watershed to treat runoff near the source. Key advantages of green streets, however, are that they are located on land directly controlled by public entities and can intercept runoff from larger upstream drainage areas when compared to LID projects. Green streets are typically implemented as linear bioretention/biofiltration practices installed parallel to roadways. Systems receive runoff from the gutter via curb cuts or curb extensions (sometimes called bump outs) and infiltrate it through native or engineered soil media. Permeable pavement can also be implemented in tandem, or as a standalone practice, in parking lanes of roads. The methods for screening potential street opportunities is discussed in **Appendix C-3** and the approach/design assumptions for representing green streets in the RAA is ## **Green Street Program Highlights:** - Implements green infrastructure in the rights-of-way - High potential for significant load reduction - Agencies retain ownership and O&M burden - Design/construction standards can yield efficiency - Strategic selection of streets can yield cost savings - Opportunity for integration with CIP - Data limitations currently hamper decision making #### **Assumptions:** Green streets implemented on suitable rights-of-way (screened for slope and road functional class) to treat contributing parcel and roadway runoff. described in Section 4.3 and C-4, and C-5. The screening procedure identified over 1,700 linear miles of potential frontage length for green streets, as shown in **Figure 3-24**. The required extent of green street implementation (per the RAA) is presented in Section 5 and detailed in **Appendix C-5**. Due to the large number of locations where green streets could be implemented, and the relative magnitude of green streets as a BMP category (compared to other BMPs) in the EWMP Implementation Plan, it is anticipated that a green streets program will be a key element of the compliance strategy for the EWMP. The development of a reliable, repeatable, and cost-effective program will require several considerations: - Development and integration of standard specifications and drawings tailored to meeting EWMP objectives - Development of data sets necessary to make street-scale site selection decisions - Strategic identification and high-efficiency opportunity and prioritization of street-scale opportunities (which can significantly reduce capital costs) - Coordination with existing street and/or utility rehabilitation programs - Adaptation and/or enhancement of existing operations and maintenance (O&M) practices for roadside bioretention and permeable pavement - BMP tracking systems Although the green streets program will carry significant responsibility for achieving EWMP goals, effort on this program must be evaluated in conjunction with other programs, such as the residential LID program and the regional BMP program. For example, downstream of places where the residential LID program is heavily implemented, or upstream of locations where large regional projects are constructed, the need for green street retrofits within the same drainage area will be reduced. As with the other programs, it will be important to track the details of green street implementation, such as street length, retention design characteristics, and drainage area to compare to the assumptions/performance used in the RAA. Figure 3-24 Opportunities for Green Streets ## 3.3 INSTITUTIONAL BMPS A number of institutional control measures and MCMs are outlined in the EWMP, representing an array of practices to most effectively address pollutants at their source or affect their transport. In general, institutional control measures are able to achieve modest load reductions but may do so cost-effectively. As described further in Section 4, institutional control measures were either modeled explicitly or implicitly. This section presents the MCMs and low-impact development (LID) programs as institutional BMPs of this EWMP. ## 3.3.1 Minimum Control Measures (MCMs) The MS4 Permit requires the implementation of MCMs in Parts VI.D.4 through VI.D.10. These MCMs are similar to the programs required under Order No. 01-182. The Permit requires the continuation of existing MCMs until the EWMP is approved by the Regional Board. The existing MCMs, much like those proposed in the Permit, comprise six categories: - 1) Public Information and Participation Program - 2) Industrial/Commercial Facilities Program - 3) Development Planning Program - 4) Development Construction Program - 5) Public Agency Activities Program - 6) Illicit Connections and Illicit Discharges Elimination Program In lieu of the requirements of Parts VI.D.4 through VI.D.10 of the Permit, Group Members may implement customized MCMs within each of the general categories. The opportunity for customization may benefit the Group Members by allowing the Group Members to assess the effectiveness of their current programs and modify their programs to better serve local conditions and objectives. #### 3.3.2 Enhanced MCMs Enhanced MCMs are incorporated for the Covina, Glendora, Industry, and the County for 10% reduction, additional measures, such as enhanced street sweeping and installation of catch basins. If during the adaptive management process, an effectiveness assessment is conducted on a specific MCM and it can be reasonably shown that customization of the MCM would result in equal or improved effectiveness on attitudes or knowledge, behavior or implementation, load reduction, or water quality, a defensible recommendation for modification of that activity can be made, resulting in greater resources freed up for more effective measures. #### 3.4 NON-STORMWATER DISCHARGE CONTROL MEASURES The Permit effectively prohibits non-stormwater discharges and the SGR Metals TMDL includes milestones for attainment of dry weather RWLs. The EWMP Implementation Plan has assurance of eliminating non-stormwater discharges through implementation of the network of wet weather control measures. Additional information on control of non-stormwater discharges is provided in **Section 5.4.** #### 3.5 SUMMARY OF EWMP CONTROL MEASURES The Group Members were surveyed to determine which of the institutional and structural control measures discussed in the preceding section are feasible and best align with existing planning efforts. These jurisdictional preferences are summarized in **Table 3-5** and provided the foundation for the control measure opportunities modeled in the RAA. The assumed opportunity for each control measure category is tabulated in **Table 3-6** and discussed in detail in **Section 4.3** and **Appendix C-3.** Table 3-5 **Summary of BMP Assumptions Survey** | | Institu-
tional ¹ | LID
Ordinance | Resident-
ial LID | LID on
Municipal
Parcels | Permeable
Pavement | Tier 1
Region-
al | Tier 2
Region-
al | Tier 3
Regional/
LID on
Schools | |---------------------------|---------------------------------|------------------|----------------------|--------------------------------|-----------------------|-------------------------|-------------------------|--| | Baldwin Park | 5% | Yes | Covina | 10% | Yes | Industry | 10% | Yes | Glendora | 10% | Yes | Yes | Yes | Yes | Yes | Yes | No | | La Puente | 5% | Yes | Yes | Yes | No | Yes | Yes | No | | Unincorporate d LA County | 10% | Yes Load reduction attributed to MCMs or enhanced MCMs With green streets Table 3-6 Summary of EWMP Control Measure Opportunities included in RAA | BMP Category | Туре | Description of Program | | | | | |
---------------------------|---|--|--|--|--|--|--| | Institutional | MCMs and/or Enhanced
MCMs | For 5% reduction: implement new MCMs in 2012 Permit For 10% reduction (for Covina, Glendora, Industry and the County): identify control measures and schedule for implementation. Examples include enhanced street sweeping and implementation of catch basin inserts. Each agency needs to provide input on which control measures they will be implementing. | | | | | | | | LID Ordinance
(New/Redevelopment) | BMP implementation assumed to be equal redevelopment growth rates reported by Los Angeles Bureau of Sanitation (see Appendix C-4). Each agency will track redevelopment and verify that that LID is implemented at projected rate, based on capacities and schedules in Section 5. | | | | | | | Laveler | Existing and Planned BMPs | Planned LID BMPs will be implemented as planned, according to projects constructed after 2011 that were listed in the Work Plan. | | | | | | | Low Impact
Development | Residential LID | Starting in 2017, each agency will have a residential LID program that enrolls 1% of residential parcels per year. Each enrolled parcel will retain the 85 th percentile storm (if less, then additional parcels will be enrolled). Each agency will track redevelopment and verify that that residential LID is implemented at projected rate, based on capacities and schedules in Section 5. | | | | | | | | LID on Public Parcels
(Retrofits) | Each agency will implement LID projects on public land according to the specified capacities and schedule in Section 5. Projects are assumed to retain the 85 th percentile storm. | | | | | | | Green Streets | Green Streets | Each agency will implement green street projects according to the specified capacities and schedule in Section 5. | | | | | | | | Tier 1 projects on Public Parcels | Each agency will implement Tier 1 regional projects (top ranked 21 projects) according to the specified capacities in Section 5. The design details for the 10 signature Tier 1 projects are specified in Section 3.2.1. | | | | | | | Regional | Tier 2 projects on Public (Group-Owned) Parcels | Each agency will implement Tier 2 regional projects (other regional projects on public land) according to the specified capacities in Section 5. These regional BMPs were assumed to be a 3-ft-deep infiltration basin. | | | | | | | | Tier 3 projects on Public (School) Parcels | If this category of BMP was elected, the agency will implement Tier 3 regional projects (regional BMPs on school properties) according to the specified capacities in Section 5. These regional BMPs were assumed to be a 3-ft-deep infiltration basin. | | | | | | | | on Private Parcels | Each agency will implement regional projects on private land (other regional according to the specified capacities in Section 5. Assumed 3-ft-deep infiltration basin at subwatershed outlets. During adaptive management, agencies will likely strive to find additional opportunities for BMPs on public land to avoid this category of BMP / land acquisition. | | | | | | # 4 Reasonable Assurance Analysis A key element of the EWMP is the RAA, which is prescribed by the Permit as a process to demonstrate "that the activities and control measures...will achieve applicable WQBELs and/or RWLs with compliance deadlines during the Permit term" (Permit section C.5.b.iv.(5), page 63 – RWQCB, 2012). While the Permit prescribes the RAA as a quantitative *demonstration* that control measures will be effective, the RAA also promotes a modeling process to support the EWMP Group with *selection* of control measures. In particular, the RAA was used to evaluate the many different scenarios/combinations of institutional, distributed and regional control measures (described in Section 3) that could potentially be used to comply with the RWLs and WQBELs of the Permit, and was then used to select the control measures specified in the EWMP Implementation Plan (described in Section 5). It is acknowledged that while the RAA is a critical element of the EWMP, the content can be rather technical and some readers may wish to skip to Section 5, which describes the EWMP Implementation Plan (i.e., the outcome of the RAA). This section describes key elements of the RAA including the following: - Modeling system used for the RAA (4.1) - Baseline critical conditions and required pollutant reductions (4.2) - o Baseline model calibration (4.2.1) - o Water quality targets (4.2.2) - o Critical conditions for wet weather and dry weather (4.2.3) - o Selection of limiting pollutants (4.2.4) - Required interim and final pollutant reduction (4.2.5) - Representation of control measures in RAA (4.3) - Approach for selecting control measures for the EWMP Implementation Plan (4.4) As referenced throughout this section, many details of the RAA are provided in the RAA Appendix that is attached as Appendix C (including several sub-appendices). In 2014, the Regional Board issued RAA Guidelines (RWQCB, 2014), which outline expectations for developing RAAs, and those guidelines were followed closely during development of this RAA. #### 4.1 MODELING SYSTEM USED FOR THE RAA The Watershed Management Modeling System (WMMS) is the modeling system used to conduct the RAA for the USGR EWMP. WMMS is specified in the Permit as an approved tool to conduct the RAA. The LACFCD, through a joint effort with USEPA, developed WMMS specifically to support informed decisions for managing stormwater. The WMMS is a comprehensive watershed model of the entire Los Angeles County area that includes the unique hydrology and hydraulics features and characterizes pollutant loading and downstream transport for all of the key TMDL constituents (Tetra Tech 2010a, 2010b). The ultimate goal of WMMS is to identify cost-effective water quality improvement projects through an integrated, watershed-based approach. A version of WMMS5 is available for public download Page 61 ⁵ The version of WMMS used for this RAA was enhanced from the version available for download. Enhancements include updates to calibration parameters according to the RAA Guidelines (Regional Board, 2014), more refined BMP routing assumptions, and application of an updated two-tier, jurisdiction-based BMP optimization approach. from Los Angeles County Department of Public Works website (http://dpw.lacounty.gov/wmd/wmms/res.aspx). The entire WMMS domain encompasses Los Angeles County's coastal watersheds of approximately 3,100 square miles, representing 2,566 subwatersheds. Of those, the USGR EWMP area encompasses 258 subwatersheds⁶ (**Figure 4-1**). The WMMS is a suite of three modeling tools to support BMP planning: - 1. A watershed model for prediction of baseline hydrology and pollutant loading (Loading Simulation Program C+ [LSPC]); - 2. A model for simulating the performance of control measures in terms of flow, concentration and load reduction (System for Urban Stormwater Treatment Analysis and Integration [SUSTAIN]); and - 3. A tool for running millions of potential scenarios and optimizing/selecting control measures based on cost-effectiveness (also within SUSTAIN). The LSPC and SUSTAIN models within WMMS are described in more detail in the following subsections. Page 62 ⁶ To support evaluation of regional BMPs, some of these subwatersheds were further grouped by "pour point" to receiving waters. Figure 4-1 USGR EWMP Group Area and 258 Subwatersheds Represented by WMMS #### 4.1.1 Watershed Model - LSPC The watershed model included within WMMS is the LSPC (Tetra Tech and USEPA 2002; USEPA 2003; Shen et al. 2004). LSPC is a watershed modeling system for simulating watershed hydrology, erosion, and water quality processes, as well as in-stream transport processes. LSPC also integrates a GIS, comprehensive data storage and management capabilities, and a data analysis/post-processing system into a convenient Windows-based environment. The algorithms of LSPC are identical to a subset of those in the Hydrologic Simulation Program–FORTRAN (HSPF) model with selected additions, such as algorithms to dynamically address land use change over time. USEPA's Office of Research and Development (Athens, Georgia) first made LSPC available as a component of USEPA's National TMDL Toolbox (http://www.epa.gov/athens/wwqtsc/index.html). LSPC has been further enhanced with expanded capabilities since its original public release. #### 4.1.2 BMP Performance and Selection Model – SUSTAIN SUSTAIN was developed by the USEPA to support practitioners in developing cost-effective management plans for municipal stormwater programs and evaluating and selecting BMPs to achieve water quality goals (USEPA, 2009; http://www2.epa.gov/water-research/system-urban-stormwater-treatment-and-analysis-integration-sustain). SUSTAIN was specifically developed as a decision-support system for selection and placement of BMPs at strategic locations in urban watersheds (see **Figure 4-2**). It includes a process-based continuous simulation BMP module for representing flow and pollutant transport routing through various types of structural BMPs. This simulation provides the *primary application* of SUSTAIN – simulating the performance of selected stormwater control measures. The secondary application of SUSTAIN is BMP selection, which is based on cost-benefit of different BMP alternatives. The SUSTAIN model in WMMS includes a cost database⁷ comprised of typical BMP cost data from a number of published sources including BMPs constructed and maintained in Los Angeles County (Tetra Tech 2010a,
2010b). SUSTAIN considers certain BMP properties as "decision variables," meaning they are allowed to vary within a given range during model simulation to support BMP selection and placement optimization. As BMP sizes and locations change, so do cost and performance. SUSTAIN runs iteratively to generate a cost-effectiveness curve comprised of millions of BMP scenarios (e.g., the model was used for the EWMP to evaluate the different combinations of green infrastructure as compared to regional BMPs, and provides a recommendation on the most cost-effective scenario)⁸. ⁷ The BMP cost database from WMMS was updated for this EWMP, as described in Section 4.6. ⁸ For the EWMP, optimization was conducted at the jurisdictional-level using SUSTAIN as opposed to the watershed-level using the Nonlinearity-Interval Mapping Scheme (NIMS) component of WMMS. Figure 4-2 SUSTAIN Model Interface Illustrating BMP Opportunities in Watershed Settings #### 4.2 BASELINE CRITICAL CONDITIONS AND REQUIRED POLLUTANT REDUCTIONS This section describes the application of the LSPC model to simulate current conditions, identify critical conditions and calculate required pollutant reductions. The calculated required reductions drive the extent of the control measures to be implemented by the EWMP under the EWMP Implementation Plan. ## 4.2.1 Baseline Model Development and Calibration A fundamental element of the RAA is simulating baseline / existing conditions in the watershed prior to implementation of control measures. For the USGR RAA, baseline conditions were simulated using the LSPC watershed model in WMMS, including predictions of flow rate and pollutant concentrations over a 10-year period, as follows: - The simulation period is October 1, 2001 to September 20, 2011⁹. - Simulated pollutants include total suspended solids, *E. coli*, total copper, total zinc, total lead, total nitrogen and total phosphorous. These are the seven (7) pollutants that are directly represented by WMMS. - An hourly time step was used to simulate the flow rate and pollutant concentration at each of the 258 subwatershed outlets (see **Figure 4-1**) and the resultant downstream receiving water conditions. - The model explicitly accounts for effects of major hydraulic structures in the watershed including Whittier Narrows, Santa Fe Dam, debris basins and multiple diversion structures. In order to encourage accurate representation of existing/baseline conditions, the RAA Guidelines provide "model calibration criteria" for demonstrating the baseline predictions are accurate and to ensure the "calibrated model properly assesses all the variables and conditions in a watershed system" (Regional Page 65 ⁹ All stormwater control measures implemented prior to September 30, 2011 are assumed to be implicitly represented within the baseline conditions. Board, 2014). Detailed hydrology and water quality calibrations were performed for the USGR RAA, as follows (see **Figure 4-3** for a map of water quality and hydrology calibration stations): - Water quality calibration: the water quality calibration process for the USGR RAA leveraged two primary monitoring datasets: - Small-scale, land use-specific water quality monitoring data collected by the Southern California Coastal Water Research Program (LACDPW, 2010b) and - Large-scale receiving water monitoring data collected by Los Angeles County Department of Public Works (LACDPW) at mass emission stations in Coyote Creek (S13) and San Gabriel River (S14). All seven pollutants (i.e. total suspended solids, *E. coli*, total copper, total zinc, total lead, total nitrogen and total phosphorous) represented in WMMS were calibrated to the data from the mass emission stations. - Hydrology calibration: a total of six stations were used for the hydrology calibration including gages along San Gabriel River, Coyote Creek, San Jose Creek and Dalton Wash. Gages along Fullerton Creek and Brea Creek were also used to assess the representation of the various flood control/water conservation structures (i.e., impoundments) in the watershed. The comparison of the calibrated hydrology model to the RAA Guidelines is shown in **Table 4-1**, and the water quality calibration is shown in **Table 4-2**. The baseline (LSPC) model performs quite well for representing existing hydrologic and water quality conditions. Details of the baseline model development and calibration are presented in **Appendix C-1**. Table 4-1 Summary of Hydrology Calibration Performance by Baseline Model | | | Hydrology | Modeled
vs. | RAA Guidelines
Performance | |--|--------------|---------------|----------------|-------------------------------| | Location | Model Period | Parameter | Observed | Assessment | | Fullerton Creek below Fullerton Dam CA (United States Geological Survey (USGS) | 10/1/2002 – | Annual Volume | -4.0% | Very Good | | 11089500) | 9/30/2011 | Storm Volume | -14.8% | Good | | Coyote Creek near Spring Street | 10/1/2003 – | Annual Volume | -16.3% | Fair | | (LA DPW F354) | 9/30/2011 | Storm Volume | 5.2% | Very Good | | Brea Creek below Brea Dam, Fullerton, CA | 10/1/2002 – | Annual Volume | 5.9% | Very Good | | (USGS 11088500) | 9/30/2011 | Storm Volume | -4.0% | Very Good | | San Gabriel River Below Florence Avenue | 10/1/2002 – | Annual Volume | 17.5% | Fair | | (LA DPW F262C) | 9/30/2011 | Storm Volume | 9.0% | Very Good | | San Jose Channel Below Seventh Avenue | 10/1/2002 – | Annual Volume | -24.8% | Fair | | (LA DPW F312B) | 9/30/2011 | Storm Volume | 8.1% | Good | | Dalton Wash At Merced Avenue | 10/1/2002 – | Annual Volume | -19.4% | Fair | | (LA DPW F274B) | 9/30/2011 | Storm Volume | -10.0% | Good | Table 4-2 Summary of <u>Water Quality</u> Calibration Performance by Baseline Model | | Mas | San Gabriel Riv | - | Coyote Creek
Mass Emission Station (S13) | | | | | |----------------------------|-----------------|--|--|---|---|--|--|--| | Water Quality
Parameter | Sample
Count | Modeled vs.
Observed
Load
(% Error) | RAA
Guidelines
Performance
Assessment | Sample
Count | Modeled
vs.
Observed
Load
(% Error) | RAA
Guidelines
Performance
Assessment | | | | Total Sediment | 23 | 7.6% | Very Good | 59 | 2.9% | Very Good | | | | Total Copper | 22 | -4.6% | Very Good | 33 | 6.7% | Very Good | | | | Total Zinc | 22 | 8.7% | Very Good | 33 | -8.6% | Very Good | | | | Total Lead | 22 | 38.7% | Fair | 33 | 32.6% | Fair | | | | E.coli * | 23 | -30.1% | Fair | 33 | -26.7% | Fair | | | | Total Nitrogen** | | | | 33 | -11.9% | Very Good | | | | Total Phosphorous | 23 | -4.3% | Very Good | 33 | -21.5% | Good | | | ^{*} E. coli was assumed to have a 1:1 translator with fecal coliform. ^{**} Total Nitrogen was approximated using the sum of the observed Total Kjeldal Nitrogen (TKN) and nitrate/nitrite values. Figure 4-3 Hydrology and Water Quality Calibration Stations for USGR RAA ## 4.2.2 Water Quality Targets The RAA is designed to achieve the RWLs and WQBELs of the MS4 Permit, which are derived from applicable TMDLs (see Attachment P of the Permit – RWQCB, 2012) and the Basin Plan (see Receiving Water Limitations, Section V of the Permit – RWQCB, 2012). In particular, the RAA addresses the Water Quality Priorities identified in Section 2. The RWLs and WQBELs serve as the "water quality targets", or loads or concentrations to be achieved through implementation of the control measures specified by the EWMP. Not all pollutants are directly modeled; the pollutants that are the most problematic and generally require the most stormwater treatment are directly modeled – total solids, zinc, copper, lead, nitrogen, phosphorous, and *E. coli*. The targets for *modeled* pollutants are listed in **Table 4-3**, organized by pollutant class. For the remaining (non-modeled) Water Quality Priorities, the RAA uses analyses of monitoring data to demonstrate that control of one or more "limiting pollutants" will address the non-modeled pollutants (as discussed in the next subsection). #### 4.2.3 Critical Conditions This following subsections describe the critical conditions for wet weather (stormwater) and dry weather (non-stormwater). #### 4.2.3.1 Wet Weather Critical Conditions A key consideration of the RAA is the "critical condition" under which water quality targets must be achieved. Stormwater management for different size storms generally requires different size BMPs. For example, for most pollutants management of a 90th percentile storm requires larger BMPs than management of a median (50th percentile) storm. The RAA Guidelines specify the RAA for final compliance should be based on critical conditions, for example, the 90th percentile flow rates and/or the critical conditions specified by applicable TMDLs (Regional Board, 2014). For the USGR RAA, three primary wet weather critical conditions were considered as follows: - 1. 90th percentile <u>metals</u> Exceedance Volume: the SGR metals TMDL uses the 90th percentile daily flow rate as the critical condition. In turn, the USGR RAA analyzes the volume of runoff during each rolling 24-hour period¹⁰ of the 10-year simulation when water quality targets were exceeded, referred to as the "Exceedance Volume" (see Figure 4-4). The storm that produces the 90th percentile Exceedance Volume¹¹ is the critical condition for metals and the overall primary critical condition for management¹² of stormwater by USGR EWMP. The Exceedance Volume differs for each metal (zinc, copper and lead) and for different subwatersheds (end-of-pipe) and assessment areas (instream) depending on land use, imperviousness, slope, etc. Shown in Table 4-4 are the summary statistics for zinc Exceedance Volumes in
USGR. The EWMP manages (retains and treats) the Exceedance Volume from each of the 258 subwatersheds in the USGR area to achieve metals RWLs. - 2. **Annual average** <u>nutrient and toxics</u> <u>loading</u>: the USEPA TMDLs for Puddingstone Reservoir (nutrients, mercury and toxics/legacy pollutants) use annual average loading as the critical condition. For the RAA, the average year was defined as the 2007-08 Water Year. The pollutant loading that occurs over the course of 2007-08 is considered the average annual pollutant loading ¹⁰ A duration of 24-hours was selected for several reasons. First, the SGR metals TMDL uses a daily flow rate as the critical condition and thus 24-hours is an analogous duration. Second, the 24-hour duration allows the Exceedance Volume to be directly compared to the runoff volume from the 85th percentile, 24-hour storm. Finally, stormwater control measures are generally sized to manage an individual storm – and thus the 24-hour Exceedance Volume is much more relevant to BMP sizing than an annual runoff volume. ¹¹ The Exceedance Volume is an appropriate metric for RAA critical conditions because the *volume* of stormwater to be managed ultimately drives the capacity of control measures in the EWMP. The Exceedance Volume allows the volume to be defined based on applicable RWLs and assures attainment of RWLs. For example, a storm that generates a large volume of stormwater runoff with pollutant concentrations slightly above the RWLs is more difficult to manage than a storm that generates a small volume of runoff with concentrations that greatly exceeds the RWLs. Also, the Exceedance Volume reflects the effect of varying water quality targets / RWLs – if a target / RWL is increased then the volume of stormwater to be managed is decreased. ¹² The term "manage" incorporates both retention and treatment approaches. Retention of the Exceedance Volume assures attainment of RWLs. Treatment of the Exceedance Volumes to concentrations below the RWLs also assures RWL attainment. Furthermore, institutional control measures reduce pollutant build-up on watershed surfaces and thus can also decrease the Exceedance Volume. - for the RAA. The EWMP manages (retains and treats) the annual runoff from in the USGR area to achieve WQBELs for nutrients, mercury and toxics/legacy pollutants. - 3. **Critical bacteria storm:** for addressing *E. coli* impairments, the "critical bacteria storm" is the 90th percentile wet day when bacteria RWLs apply. Bacteria RWLs were assumed to *not* apply on days subject to the High Flow Suspension (all assessment areas except Puente Creek are subject to the HFS) and Allowable Exceedance Days. Using the Los Angeles River Bacteria TMDL as a template¹³, non-HFS and HFS waterbodies are subject to an additional 10 and 15 Allowable Exceedance Days per year, respectively (**Table 4-4**). Within each water year between 2002 and 2012, the HFS days were excluded and then the 11th- or 16th- wettest day was determined (the first day with RWLs apply). For the 10-year simulation, there are 10 of those days (one per year) and the 2nd wettest is the critical bacteria storm (the 2nd highest of 10 values is the 90th percentile). The simulated critical bacteria storm is a 24-hour storm. The EWMP retains¹⁴ the runoff from the critical bacteria storm (from each subwatershed outlet, prior to discharge to receiving waters) to achieve *E. coli* WOBELs. ¹³ The Los Angeles River Bacteria TMDL was used as a basis for modeling because it is the most recent bacteria TMDL developed by the Regional Board for a large area. Similar to the SGR watershed, the Los Angeles River watershed is one of the largest watersheds in the region and has a variety of land uses, ranging from open space in the hills to highly urbanized areas in the downstream valley. At the time of RAA development, the SGR Bacteria TMDL had not been released and it will not be finalized until summer 2015 or effective until 2016. The USGR EWMP will be updated during adaptive management, as needed, to reflect the wasteload allocations in the SGR Bacteria TMDL after it is effective. ¹⁴ Addressing bacteria though retention of the critical bacteria storm has several benefits for the RAA. First, the RAA for bacteria is essentially based on *hydrology* rather than prediction of bacteria concentrations / loads, which can be challenging given the variability of bacteria concentrations in the environment and multitude of potential bacteria sources. By emphasizing *retention* prior to discharge to receiving waters, the RAA acknowledges that few stormwater control measures are able to reliably treat bacteria to concentrations below applicable RWLs. In essence, the entire volume of runoff from the critical bacteria storm is assumed to be an Exceedance Volume. Note the depth of rainfall that generates the critical bacteria storm varies by subwatershed based on historic rainfall at rain gages in the EWMP area (e.g., generally larger storms at higher elevations and smaller storms at lower elevations). Subwatersheds where bacteria concentrations are predicted to be below *E. coli* RWLs in 100% of the time steps during the 10-year simulation are excluded from retaining the critical bacteria storm (generally, only watersheds with 0% impervious area meet this exclusion condition). Table 4-3 Targets for Modeled Water Quality Priority Pollutants and RAA Approach for Addressing Pollutants | | | Target for RAA (units are ug/L except when noted otherwise | | | herwise) | Assessment Area where Target Applies to Address Water Quality Priority | | | | | s | |-----------------------|-------------|--|---------------|-------------------|---------------|--|-----------------|----------------------|-----------------|-----------------|--------------------------------| | Pollutant
Class | Pollutant | Dry
Weather | Source | Wet
Weather | Source | San
Gabriel
River | Coyote
Creek | San
Jose
Creek | Walnut
Creek | Puente
Creek | Pudding-
stone
Reservoir | | | Conner | 15.05 | CTR | 23.72 | CTR | Х | | Х | Х | Х | Х | | | Copper | 15.05 | CTR | 24.71 | TMDL | | X | | | | | | Metals ¹ | Zinc | 192.5 | CTR | 192.5 | CTR | Х | | Х | Х | Х | Х | | Wetais | ZITIC | 144.57 | TMDL | 144.57 | TMDL | | X | | | | | | | Load | 6.49 | CTR | 81.34 | TMDL | Х | | Х | Х | Х | Х | | | Lead | 6.49 | CTR | 96.99 | TMDL | | X | | | | | | Bacteria ² | E. coli | 126 Most
Probable
Number
(MPN)
/100mL | Basin
Plan | 235 MPN/
100mL | Basin
Plan | х | х | × | х | Х | х | | Nutrients | Phosphorous | 74 | 1 lbs / yea | r | TMDL | | | | | | Х | | Nutrients | Nitrogen | 3390 lbs / year | | | TMDL | | | | | | Х | | | Chlordane | | al sedimen | t reduction | TMDL | | | | | | Х | | | PCBs | 98.8% annual sediment reduction | | TMDL | | | | | | Х | | | Legacy | Dieldrin | 78.0% annu | al sedimen | t reduction | TMDL | | | | | | Х | | | DDT | 28.4% annu | al sedimer | t reduction | TMDL | | | | | | Х | ^{1 –} Based on total metals. When the SGR Metals TMDL specifies a WLA (the WQO source is "TMDL"), the WLA is used as the target. Where the TMDL does not apply (the WQO source is "CTR"), hardness assumed to be 175 mg/L as CaCO3, which is the hardness used to develop SGR WLAs in the SGR Metals TMDL. When applicable, dry weather targets were based on chronic WQOs and wet weather targets are based on acute WQOs. ^{2 –} The High Flow Suspension applies to all assessment areas except Puente Creek. For the RAA, the targets of the LA River Bacteria TMDL were used – assessment areas that are subject to the HFS receive an additional 10 Allowable Exceedance Days per year, while Puente Creek receives an additional 15 Allowable Exceedance Days. Dry weather target based on 30-day geometric mean WQO while wet weather target is based on single sample maximum WQO. Figure 4-4 Illustration of How Metals Exceedance Volume is Calculated for Critical Condition Determination Table 4-4 Zinc Exceedance Volume Summary Statistics for USGR | | RAA Assessment Area (at watershed mouth) | | | | | | | | |--|--|-----------------|-----------------|----------------------|-----------------|--------------------------------|--|--| | Total Zinc Exceedance Volume (EV) Statistics (units of acre-feet) | San
Gabriel
River | Coyote
Creek | Walnut
Creek | San
Jose
Creek | Puente
Creek | Pudding-
stone
Reservoir | | | | Number of rolling, 24-hour periods with an EV in 10-year simulation (out of a total of 87,660 periods) | 3,505 | 6,308 | 3,264 | 5,898 | 6,691 | 4,329 | | | | Average EV | 40.4 | 333.2 | 224.5 | 342.1 | 28.4 | 37.8 | | | | 10 th percentile EV | 4.1 | 43.7 | 34.2 | 59.0 | 2.4 | 5.2 | | | | 25 th percentile EV | 7.8 | 70.3 | 89.4 | 106.5 | 5.7 | 12.3 | | | | Median EV | 21.7 | 170.3 | 164.6 | 200.1 | 15.9 | 25.2 | | | | 75 th percentile EV | 58.3 | 415.5 | 311.1 | 442.8 | 35.1 | 55.3 | | | | 90 th percentile EV | 98.0 | 831.9 | 458.1 | 827.0 | 75.8 | 88.9 | | | Note: The storm that generates the 90^{th} percentile zinc EV is the critical condition for metals. The storm that generates the average zinc EV is the interim condition for metals. ## 4.2.3.2 Dry Weather Critical Conditions A separate RAA was performed for dry weather conditions to assure that control measures in the EWMP attain dry weather WQBELs / RWLs and address non-stormwater discharges that are effectively prohibited. This subsection summarizes the development of the non-stormwater model developed for the dry weather RAA. A detailed description of the dry weather RAA is provided in **Appendix C-2**. The Permit effectively prohibits discharges of non-stormwater¹⁵ (dry weather runoff) and states that EWMPs shall "ensure that
discharges…do not include non-stormwater discharges that are effectively prohibited." In addition, the Permit includes dry weather WQBELs for the San Gabriel River Metals TMDL. A baseline non-stormwater model was developed for the USGR EWMP based on the following components: - **Simulation of non-stormwater sources that generate dry weather runoff:** the primary source of non-stormwater is outdoor water use. As such, the dry weather RAA is based on a simulation of non-stormwater whose *source* is outdoor water use¹⁶ in each of the subwatersheds within the EWMP area and whose *sink* is evapotranspiration and retention by wet weather EWMP control measures. - Non-stormwater generated by outdoor water use based on extensive literature review: the amount of non-stormwater generated in each USGR subwatershed was estimated as the product of [1] the estimated population based on U.S. census blocks and [2] the estimated per capita outdoor water use based on compilation of 25 estimates relevant to southern California (see Figure 4-5). The use of median historic outdoor water use is likely conservatively high, as outdoor water use has likely fallen during the recent drought. - Thirty (30) day simulation of critical dry period: the period of the simulation was a critical dry period identified in the average water year (August 21, 2007 to September 20, 2007). This portion of the year (late August to September) historically receives the least amount of rainfall. The evapotranspiration during this period provides the weather boundary condition for the non-stormwater simulation. While the critical conditions for dry and wet weather are uniquely defined, it is important that dry and wet weather conditions not be evaluated in separate silos – the EWMP includes a large network of wet weather BMPs that will eliminate a majority of non-stormwater discharges. The dry weather RAA quantifies the reduction of wet weather BMPs on non-stormwater discharges, and assures that TMDL milestones are attained on the required implementation timeline. The EWMP Implementation Plan for non-stormwater is presented in Section 5. ¹⁵ Non-stormwater does not include all dry weather runoff. For example, permitted dry weather discharges (e.g., dewatering) and groundwater baseflow are exempted/allowed by the Permit. ¹⁶ Non-stormwater volumes are not necessarily equal to dry weather runoff volumes in the EWMP area. Non-stormwater is the portion of dry weather runoff that is effectively prohibited by the Permit. Dry weather runoff would also include groundwater that is discharged through the MS4 system (if any), which is allowed by the Permit. By focusing on the non-stormwater portion of dry weather runoff, the non-stormwater analysis and dry weather RAA are focused on the portion of dry weather runoff that is required to be controlled by MS4s. Figure 4-5 Outdoor Water Use Estimates from Literature Review ## 4.2.4 Limiting Pollutant Selection The RAA Guidelines allow the EWMP to be developed with consideration of a "limiting pollutant", or the pollutant that drives BMP capacity (i.e., control measures that address the limiting pollutant will also address other pollutants). The detailed limiting pollutant selection and justification for each Water Quality Priority pollutant is provided in **Table 4-5**. The limiting pollutants are as follows: - Wet weather zinc and E. coli: according to the Exceedance Volume analysis and review of monitoring data, control of zinc and E. coli requires BMP capacities that are the largest among the Water Quality Priority pollutants, and thus control of zinc and E. coli has assurance of addressing the other USGR wet weather Water Quality Priorities. The RAA for USGR first identifies the control measures to attain zinc RWLs (during the zinc critical condition) and then identifies additional capacity, if any, needed to achieve bacteria WQBELs (through retention of the critical bacteria storm). - **Dry weather** *E. coli*: among all the pollutants monitored during dry weather at mass emission stations in the County, *E. coli* most frequently exceeds RWLs. During monitoring "snapshots" of over 100 outfalls along the LA River, over 85% of samples exceeded WQBELs for *E. coli* during dry weather the Bacteria Source Identification Study along the Los Angeles River (CREST, 2008). Of the 416 samples compiled from receiving water monitoring along San Gabriel River and San Jose Creek in the last five years, 188 (45%) exceeded the RWL for *E. coli*. Attainment of dry weather RWLs for *E. coli* will require extensive control measures and/or significant reductions in non-stormwater discharges. As such, control of *E. coli* during dry weather has assurance of addressing the other USGR dry weather Water Quality Priorities. As shown in **Figure 4-6**, the RAA sequentially addresses the limiting pollutants in stormwater (wet weather RAA) and non-stormwater (dry weather RAA) based on the limiting pollutant analysis. It is important to distinguish between reasonable assurance and required implementation actions when considering limiting pollutants. While control of zinc and *E. coli* has reasonable assurance of addressing other Water Quality Priorities, it is not *necessary* to fully control zinc and *E. coli* to address the other Water Quality Priorities. For example, as shown in **Table 4-5**, exceedances of metals during dry weather are rare and thus existing MCMs and control measures have reasonable assurance of attaining metals RWLs during dry weather. As such, if exceedances of metals during dry weather occur during EWMP implementation, then compliance determination should *not* be based on the status of implementation of zinc and *E. coli* control measures. Instead, compliance determination should be based on evaluation of whether the existing level of implementation for MCMs and control measures (as of June 2015) has been maintained. Table 4-5 Limiting Pollutant Selection and Justification for RAA | | | RAA approach to Addressing Pollutant | | | | | | | |-----------------------|--------------|--|--|---|--|--|--|--| | Pollutant
Class | Pollutant | Wet
Weather
RWLs:
Addressed
by | Justification for control approach | Dry
Weather
RWLs:
Addressed
by | Justification for control approach | | | | | | Zinc | | Zinc is one of two wet weather limiting pollutants. | | Exceedances of metals during dry weather are rare | | | | | | Copper | 7: | A large portion of copper loading is being phased out through brake pad replacement (AB346). The reduction will cause zinc to become limiting. | Tuistin a | Of 337 samples compiled from receiving water monitoring efforts in San Gabriel River and San Jose Creek during the last five years, a total of six samples | | | | | Metals ¹ | Lead | Zinc | | Existing MCMs and | exceeded the RWL for total copper. Of 227 samples | | | | | | Nickel | | The volumes of stormwater to be managed for zinc | BMPs | for total zinc, zero exceeded the RWL. Of 219 samples for total lead, zero exceeded the RWL. Of | | | | | | Selenium | | control are greater than volumes for control of these metals. | | 423 samples for selenium, five exceeded the RWL. | | | | | | Mercury | | metals. | | Of 217 samples for total cadmium, zero exceeded the RWL. | | | | | | Cadmium | | | | | | | | | Bacteria ² | E. coli | E. coli
controls | E. coli is one of two wet weather limiting pollutants. | E. coli
controls | E. coli is the dry weather limiting pollutant. | | | | | | Sulfate | | - not a Water Quality Priority E. coli | | Volumes of non-stormwater to be managed for <i>E.coli</i> control are greater than volumes for control of these | | | | | Salts | Chloride | Not applicable for wet weather | e – not a Water Quality Priority
er conditions. | | | | | | | | TDS | | | controls | salts. | | | | | | Phosphorous | | | | Nutrient WQBELs apply to EWMP areas that drain to Puddingstone Reservoir, which will be subject to zinc | | | | | Nutrients | Nitrogen | Annual load re | reduction achieved through zinc controls | | controls. The volumes of stormwater to be managed for zinc control are greater than volumes for nutrient control. | | | | | | Chlordane | | | | These legacy pollutant WQBELs apply to EWMP areas that drain to Puddingstone Reservoir, which will | | | | | | | | duction achieved through zinc controls | be subject to zinc controls. The volumes of | | | | | | | | | ource controls, if necessary) | stormwater to be managed for zinc are greater than volumes for legacy pollutant control. Residual source | | | | | | Legacy | DDT | | | | controls will be implemented after zinc control implementation, if needed. | | | | | | PAHs | Annual land | eduction achieved through zing controls | The volumes of stormwater to be managed for zinc | | | | | | | Lindane | | eduction achieved through zinc controls cource controls, if necessary) | control are greater than volumes for legacy pollutant control. Residual source controls will be implemented | | | | | | | A.Endosulfan | | · | | after zinc control implementation, if needed. | | | | **Identify Control Identify** Represent Measures for **Baseline Control Metals TMDL Critical** Measures and other Water for E. coli **Conditions Quality Priorities** Use SUSTAIN to identify Use SUSTAIN to determine Use LPSC to simulate control measures to achieve additional capacity required watershed rainfall-runoff for 10-year 90th percentile required reductions based (if any) to retain the critical on zinc control bacteria storm critical condition Wet Weather
Required LID. Reductions Additional Green Streets, (flow rate, zinc, Regional and Regional BMPs bacteria) **BMPs** (if necessary) **Unmanaged Areas** Route dry-weather runoff Use census data and per-**Dry Weather** Determine if additional capita outdoor water use through wet-weather BMPs non-stormwater control to estimate dry-weather to quantify elimination of measures are necessary runoff volume non-stormwater runoff Additional **Dry-Weather** Wet-Weather Non-stormwater **Runoff Volume BMP** network **Abatement** (if necessary) Figure 4-6 RAA Process for Establishing Critical Conditions and Addressing Water Quality Priorities #### 4.2.5 Required Interim and Final Pollutant Reductions The RAA Guidelines specify that required pollutant reductions should be determined by comparing baseline/current pollutant loading to the allowable pollutant loading (RWQCB, 2014). With a set of defined critical conditions and identified limiting pollutants for USGR (as described in the previous two subsections), the required pollutant reductions for USGR can be determined, as shown in **Table 4-6**. The control measures to be implemented by the EWMP are designed to achieve these reductions, and the RAA provides assurance the required reductions will be achieved by the selected control measures. Each jurisdiction in the USGR EWMP Group is held to achieving the equitable reductions for the receiving waters / assessment areas to which they discharge. An important consideration for the RAA and scheduling of control measures is the difference between interim and final requirements. While the *critical* condition (90th percentile) is used to define the required reductions for final compliance, interim compliance is based on *average* conditions according to the RAA Guidelines (RWQCB, 2014): "For interim WQBELs and/or receiving water limitations, the percent reduction based on annual average baseline loading may be used to set targets/goals for BMPs/watershed control measures. A gradual phasing of percent load reduction for interim WQBELs/RWLs to final WQBELs/RWLs shall be applied over the course of the implementation schedule." [page 7] For the USGR RAA, the gradual phasing is achieved by determining the ratio of loading during average to 90th percentile conditions, as shown in **Table 4-6**. Zinc loading during the interim/average condition is between 29% and 53% of the loading that occurs during the final/90th percentile condition. The approach for applying this ratio during scheduling of control measures for EWMP/TMDL milestones is described in **Section 2**. Table 4-6 Required USGR Pollutant Reductions for Interim and Final Compliance | | | RAA Assessment Area | | | | | | | | |--|--|--|-----------------|-----------------|----------------------|-----------------|--------------------------------|--|--| | Condition and
Pollutant
Addressed | Reduction
Metric | San
Gabriel
River | Coyote
Creek | Walnut
Creek | San
Jose
Creek | Puente
Creek | Pudding-
stone
Reservoir | | | | Final Compliance with Metals and Other Water Quality Priorities (except <i>E. coli</i>) | Required Load
Reduction ¹ | 64% | 67% | 62% | 67% | 76% | 78% | | | | | Loading during average/interim condition (pounds) ² | 124 | 702 | 427 | 434 | 53 | 94 | | | | Interim Compliance with Metals and Other Water Quality Priorities | Loading during 90 th percentile/final condition (pounds) ³ | 293 | 1,335 | 918 | 1,500 | 158 | 198 | | | | (except <i>E. coli</i>) | Ratio used to gradually phase from interim to final required reduction | 0.42 | 0.53 | 0.47 | 0.29 | 0.34 | 0.47 | | | | Final Compliance with <i>E. coli</i> | Runoff volume to be retained | Runoff from critical bacteria storm is retained prior to discharge to receiving water (excluding open space subwatersheds) | | | | | | | | ^{1 –} Based on control of zinc during storm that generates the 90th percentile zinc Exceedance Volume #### 4.3 REPRESENTATION OF EWMP CONTROL MEASURES Once the model is set up to accurately simulate baseline hydrology and water quality conditions, the targets have been calculated, and the required reductions estimated, the next stage of the RAA determines the optimal combination of BMP types to achieve applicable RWLs and WQBELs. This step requires a ^{2 -} Loading of zinc at mouth of watershed from storm that generates the average zinc Exceedance Volume ^{3 –} Loading of zinc at mouth of watershed from storm that generates the 90th percentile zinc Exceedance Volume robust set of assumptions to define the watershed-wide extent and configuration of each of the types of control measures (an overview of control measure categories is provided in Section 3). The representation of control measures in the model is an important element of the RAA, as it provides the link between future watershed activities, model-predicted water quality improvement, and, ultimately, compliance. Since the BMP modeling parameters will greatly influence the outcome of the RAA, it is imperative that the suite of BMP assumptions are based on the best available data and represent the opportunity and limitations that will be faced by designers, contractors, and maintenance crews in the field as these BMPs are implemented over time, Further, the technical rigor of the analysis must be appropriately balanced with the resolution of the modeling system and the accuracy of the key datasets. This section will present and review the three primary elements for representing BMPs in the RAA model, as follows: - *Opportunity* Where can these BMPs be located and how many can be accommodated? - System Configuration How is the runoff routed to and through the BMP and what is the maximum BMP size? - *Cost Functions* What is the relationship between BMP volume/footprint/design elements and costs? The following sections provide an overview of methods, summarize key assumptions, and highlight potential data limitations. Cost functions used for BMP optimization are presented in Section 7. **Appendices C-3** through **C-6**, as summarized in the following subsections, contain additional information including details on how each type of control measure (LID, green streets, regional BMPs) was represented in the modeling system (SUSTAIN). ## 4.3.1 BMP Opportunities BMPs can only feasibly be implemented at certain locations in the watershed and foremost, BMPs may only be implemented within certain practical bounds throughout the watershed. While physical constraints may limit implementation in some areas (e.g., high slopes, insufficient space), practical or preferential constraints are also an important consideration for each jurisdiction (e.g., parcel ownership, redevelopment rates). To ensure that the spatial and temporal extent of BMP opportunities were accurately accounted for in the model, a BMP opportunity assessment was customized for each individual BMP category and type. The best available data and GIS layers were specifically selected to screen out inappropriate opportunities and/or identify high priority project opportunities (e.g. regional projects on public parcels). A summary of these methods was provided earlier in **Section 3** and detailed methods and screening results are provided in **Appendix C-3**. In addition to the spatial opportunity screening process which highlighted on potential roadblocks to BMP implementation, the preferences of the Group (presented in Section 3.5) were incorporated into the RAA to allow the EWMP Implementation Plan to be customized to each jurisdiction. ## 4.3.2 System Configuration BMP configuration is determined by a combination of [1] physical watershed properties that are generally unchangeable (e.g., location of parcels or streets, soil types, drainage areas, space available for BMPs) and [2] BMP design assumptions which are at the discretion of the responsible agency (e.g., standard BMP profiles, underdrain configurations, soil media mixes). **Table 4-7** provides a brief overview of BMP configuration assumptions and **Appendix D-4** provides details on how variables were defined for each BMP categories/types, including the following: - **Drainage Area** Determined by the physical setup of the watershed and the placement of the BMP, drainage area ultimately defines how much water and pollutant load could possibly arrive at the site. A typical (or specific, where possible) drainage area is estimated for each category of BMP in **Appendix C-3** and **C-4**. - Infiltration Rate Determined by the soil types in the area, infiltration rate defines the rate at which water exits the BMP into the soil. Appendix C-3 provides details for how infiltration rates were spatially estimated. - **Routing** Determined by the drainage network in the local area, the runoff conveyance method is critical to determining how much of the runoff and associated pollutants are accessible to the BMP. Conveyance systems that are underground or well below-grade often require pumping to lift the runoff to a BMP. **Table 4-7** provides details on when pumping is assumed. - **BMP Design** Determined by the physical space available at the site and the standard profile assumed, BMP design defines the spatial footprint, depth, and internal hydraulic routing of runoff through the BMP. **Appendix C-4** provides BMP design details for each individual BMP category and type. - **BMP** Efficacy Determined by the BMP type selected, BMP efficacy defines the pollutant removal rates for overflow or underdrain effluent from the BMP. **Appendix C-4** provides BMP efficacy details. Careful analyses were performed to specifically tailor each of the above variables for every individual BMP category and type.
This required a thorough understanding of the watershed setting (to determine common available BMP footprints, typical drainage areas, and conditions that warranted pumping), innovative use of existing datasets to estimate spatially varied infiltration rates, familiarity with local codes and standard BMP design practices to set design profiles, and access to a large database of BMP performance metrics to estimate pollutant load removal effectiveness. The results of these analyses has yielded a robust and defensible suite of BMP configuration assumptions that truly and reasonably represent future BMP implementation in the watershed. Table 4-7 Summary of BMP Design Assumptions for Final Compliance RAA | BMP
Category | Туре | Key Design Parameters | | | | | | |------------------|---|--|--|--|--|--|--| | Institutional | MCMs and/or Enhanced
MCMs | None, not modeled explicitly. | | | | | | | | LID Ordinance
(New/Redevelopment) | Bioretention/Biofiltration sized to capture 85 th percentile runoff from parcel. Underdrains required if subsoil infiltration rate less than 0.3 in/hr. | | | | | | | Low Impact | Existing and Planned BMPs | Bioretention/Biofiltration sized to capture 85 th percentile runoff from parcel. Underdrains required if subsoil infiltration rate less than 0.3 in/hr. | | | | | | | Development | Residential LID | Bioretention sized to approximately 4% of parcel area (typical sizing to capture 85 th percentile runoff) | | | | | | | | LID on Public Parcels
(Retrofits) | Bioretention/Biofiltration sized to capture 85 th percentile runoff from parcel. Underdrains required if subsoil infiltration rate less than 0.3 in/hr. | | | | | | | Green
Streets | Green Streets | Bioretention/biofiltration is 4-ft wide. Permeable pavement/subsurface storage is 5-ft wide and used in tandem with bioretention/biofiltration. 50% of street length retrofittable. Underdrains required if subsoil infiltration rate less than 0.3 in/hr. | | | | | | | | Tier 1 projects on Public Parcels | BMP footprint delineated and ponding depth specified based on site configuration, topography, depth to groundwater, and infrastructure. Pump specified if greater than 100 ft from major storm drain using optimum diversion rate (0.07 cfs/ac). | | | | | | | Regional | | For Duck Pond, 15 acres of stormwater wetland, with 1-ft temporary ponding depth and 2-5 day drawdown period. Pump specified with optimum diversion rate (0.07 cfs/ac). | | | | | | | | Tier 2 Projects on Public
(Group-Owned) Parcels
and Tier 3 projects on
Public (School) Parcels | Same as Tier 1 except ponding depth was assumed to be 3 ft (rather than based on site-specific configuration). Also, drainage areas and footprints are coarser due to the large number of these projects. | | | | | | | | on Private Parcels | Assumed 3-ft-deep infiltration basin at subwatershed outlets. Pumping assumed with no diversion limitations. Maximum footprint = 5% of contributing area. | | | | | | ## 4.3.3 Cost Functions As discussed in the next section, the RAA selects a cost-effective combination of BMPs by weighing long-term implementation costs versus the attained load reduction benefits. Because the assumed BMP unit costs can greatly impact the spatial and temporal compliance strategy, the cost functions must be robust and consider life-cycle costs in addition to construction. Unit cost functions for optimization were therefore specified for each BMP type based on best-available local data and included 20 years of O&M costs. Details on the cost functions are provided in the documentation for the WMMS model (http://dpw.lacounty.gov/wmd/wmms/res.aspx). #### 4.4 SELECTION OF CONTROL MEASURES FOR POLLUANT REDUCTION PLAN The RAA process is an important tool for assisting EWMP agencies with selection of control measures for EWMP implementation (known as the EWMP Implementation Plan). A major challenge associated with stormwater planning is the multitude of potential types and locations of control measures and the varying performance and cost of each scenario. This subsection describes the process for selecting the control measures for the EWMP Implementation Plan by each jurisdiction. ### 4.4.1 Selection of Control Measures for Final Wet Weather Compliance The SUSTAIN model within WMMS provides a powerful tool for considering millions of scenarios of control measures and recommending a solution based on cost-effectiveness. The cost functions described in the previous subsection are used to weigh the cost of different BMP scenarios with benefits in terms of pollutant load reduction. As shown in **Figure 4-6**, the RAA process for USGR first determines the control measures to achieve zinc RWLs under critical conditions and then determines the additional capacity (if any) to retain the critical bacteria storm. The optimization modeling is conducted stepwise to determine the control measures for final compliance that are selected for the EWMP Implementation Plan, as follows: - 1. **Determine the cost-effective BMP solutions** for each subwatershed in the EWMP area: an example set of "BMP solutions" is shown in Figure 4-7, which shows thousands of scenarios considered for an individual subwatershed in the EWMP area. The scenarios are based on the available opportunity (e.g., the available footprints for regional BMPs and length of right-of-way for green streets) and predicted performance for controlling zinc if BMPs were implemented at those opportunities with varying sizes. The most cost-effective BMP solutions for each of the 258 subwatersheds in the EWMP area provide the basis for cost optimization. - 2. **Determine the cost-effective scenarios** <u>for each jurisdiction</u> in the EWMP Group: by rolling up the BMP solutions at the subwatershed level, the most cost-effective scenarios for each jurisdiction can be determined for a wide range of required zinc reductions. These "cost optimization curves" provide a potential EWMP Implementation Plan for a range of required reductions. **Figure 4-8** shows example cost optimization curves for the jurisdictions that drain to the mainstem of the San Gabriel River. Each scenario is a "recipe for compliance" for all the subwatersheds in the jurisdictional area (for a given percent reduction). The complete set of cost optimization curves for the USGR EWMP is presented in **Appendix C-7**. - 3. Extract the cost-effective scenarios for the required reduction: the required zinc reductions specified in Table 4-4 determine the specific scenario that is selected from the cost optimization curves. All jurisdictions within the assessment areas are held to the same percent reduction. The selected scenarios become the EWMP Implementation Plan. Figure 4-9 illustrates the process for extracting the control measures to achieve zinc RWLs from the cost optimization curve. The extracted control measures comprise a detailed recipe for compliance with RWLs for metals and other Water Quality Priorities for each subwatershed in the jurisdictional area. - 4. Route the critical bacteria storm through the control measures in the extracted scenario: the effectiveness of the selected control measures for retaining the critical bacteria storm is evaluated. The additional capacity (if any) to retain the critical bacteria storm is determined for each subwatershed. The resulting EWMP Implementation Plan for final compliance is presented in Section 5. Figure 4-7 Example BMP Solutions for a Selected Subwatershed and Advantage of Cost-Benefit Optimization Figure 4-8 Example Cost Optimization Curves for a Watershed: San Gabriel River (mainstem) This example for San Gabriel River shows the set of optimized BMP solutions for USGR EWMP jurisdictions that drain directly to the mainstem San Gabriel River. Each optimization curve represents over 1 million BMP scenarios that were evaluated for cost-effectiveness. See Appendix C-7 for the complete set of cost optimization curves. All jurisdictions are held to an equitable 64% reduction, but the curves differ among jurisdictions due to differing BMP opportunities. Figure 4-9 Illustration of how the EWMP Implementation Plan is Extracted from a Cost Optimization Curve This illustration uses the Unincorporated LA County jurisdiction in Walnut Creek watershed as an example. Three steps are shown for RAA development: cost-optimized BMP solutions are developed for a wide range of % load reductions (1st, uppermost text box), followed by determination of the equitable % load reduction needed to attain RWLs for the corresponding receiving water (2nd, middle text box), and then the corresponding BMP solution is extracted to complete the RAA and determine the EWMP Implementation Plan for the jurisdictional area (3rd, bottom text box). The EWMP Implementation Plan for all jurisdictions and assessment areas is presented in Section 5. Note that while all jurisdictions in an assessment area/watershed are held to an equivalent % reduction, subwatersheds within a jurisdiction may have variable reductions based on optimization (which is why some subwatersheds have high % reductions [red shaded rows in table] and others have low % reductions). #### 4.4.2 Selection of Control Measures for Interim Wet Weather Compliance With the EWMP Implementation Plan for final compliance determined, the remaining step for the wet weather RAA is scheduling of control measures *over time* to achieve interim milestones. The following wet weather milestones were utilized for development of the USGR EWMP, primarily based on the milestones of the SGR Metals TMDL: - Achieve
10% of the reduction for zinc¹⁷ (2017) - Achieve 35% of the reduction for zinc (2020) - Achieve 65% of the reduction for zinc (2023) - Final compliance with zinc RWLs (2026) - Final compliance with bacteria WQBELs (2040)¹⁸ As described in **Section 4.2.5**, the applicable critical condition gradually phases from average conditions for interim milestones to critical conditions (90th percentile) for final compliance. The approach for determining the control measures that correspond to each milestone was as follows: - 1. Simulate the BMP performance of increasing levels of control measure implementation: multiple increments of "percent completion" of the final EWMP Implementation Plan were simulated to determine the relative performance as control measures are implemented toward final compliance. The result is a curve of Percent of Final Reduction versus Percent of Final Capacity (see Figure 4-10). - 2. **Incorporate the gradual phasing from average the critical conditions:** the gradual phasing was accomplished by applying the average: final ratios in **Table 4-6** to the BMP sequencing. An illustration of the phasing approach is shown in **Figure 4-10**. The orange "translator" from average to final phases from relying entirely on average conditions at 0% completion and phases to relying entirely on final conditions at 100% completion. The formulation of the orange translator line is based on the quadratic equation, as detailed in **Appendix D-8**. The scenario of control measures that corresponds to each of the EWMP / TMDL milestones was extracted and used for scheduling of the EWMP Implementation Plan, as presented in the next section. Page 86 ¹⁷ While these milestones are expressed as reduction in zinc, because zinc is a limiting pollutant (see Section 4.2.4), achievement of zinc RWLs by these dates assures even greater reduction in other Water Quality Priority pollutants. ¹⁸ The compliance date of 2040 is selected for attainment of bacteria WQBELs matches the timeline used for the LA River Bacteria TMDL (25 years for wet weather compliance). Figure 4-10 Illustration of Gradually Phasing from Average to Critical Conditions for Interim Milestones The orange "translator" line phases from average to final by relying entirely on average conditions at 0% final BMP capacity and then phases to relying entirely on final conditions at 100% BMP capacity. In the example, the average to final ratio is 0.34 (see right hand side of figure). The percent BMP completion based on the final compliance target (critical conditions) is represented by the top blue line [segment $A \rightarrow C$], while percent BMP completion based on the interim target (average conditions) is represented by bottom blue line [segment $A \rightarrow B$]. The orange curve represents the "translator" for phasing of the pollutant reduction target from average to critical conditions to match the approach recommended by the RAA Guidelines (and account for the average to final ratio of 0.34). A reduction of 35% under average conditions represents a 20% reduction under final conditions. A 65% reduction under average conditions represents a 50% reduction under final conditions. The relative difference depends on the average to final ratio, which is watershed-specific (see **Table 4-6**). As the ratio approaches 1.0, average and final conditions become identical. ### 5 EWMP Implementation Plan The EWMP Implementation Plan is the "recipe for compliance" of each jurisdiction to address Water Quality Priorities and comply with the provisions of the MS4 Permit. Through the RAA, a series of quantitative analyses were used to identify the capacities of LID, green streets and regional BMPs that comprise the EWMP Implementation Plan and assure those control measures will address the Water Quality Priorities per the milestones/compliance schedules. The EWMP Implementation Plan includes individual recipes for each jurisdiction and each watershed/assessment area – San Gabriel River (mainstem), Coyote Creek, San Jose Creek, Puente Creek and Walnut Creek (see **Figure 4-1** for a map of these assessment areas). Implementation of the EWMP Implementation Plan will provide a BMP-based compliance pathway for each jurisdiction under the MS4 Permit. This section describes the EWMP Implementation Plan and the pace of its implementation to achieve applicable milestones, through the following subsections: - Elements of the EWMP Implementation Plan (5.1) - Stormwater control measures to be implemented by 2040 for final compliance (5.2) - Scheduling of stormwater control measures to achieve TMDL and EWMP milestones (5.3) - Non-stormwater control measures (5.4) #### 5.1 ELEMENTS OF THE EWMP IMPLEMENTATION PLAN The EWMP Implementation Plan is expressed in terms of [1] the volumes¹⁹ of stormwater and non-stormwater to be managed by each jurisdiction to address Water Quality Priorities and [2] the control measures that will be implemented to achieve those volume reductions. The two primary elements of the EWMP Implementation Plan are as follows: - Compliance Targets: for MS4 compliance determination purposes, the ultimate metric for EWMP implementation is the volume of stormwater managed by implemented control measures. The stormwater volume to be managed²⁰ is considered a measurable goal that could be used to assess BMP-based compliance. To support future compliance determination and adaptive management, the volume of stormwater is reported along with the capacities of control measures to be implemented by each jurisdiction in the EWMP Implementation Plan. - **EWMP Implementation Plan**: the network of control measures that has reasonable assurance of achieving the Compliance Targets is referred to as the EWMP Implementation Plan. The identified BMPs (and BMP preferences) will likely evolve over the course of adaptive ¹⁹ Volume is used rather than pollutant loading because volume reduction is more readily tracked and reported by MS4 agencies. As described in Section 4.2.3, the volume reductions are actually a *water quality* improvement metric based on required pollutant reductions. ²⁰ The volume is determined by reporting the amount of water that would be retained (infiltrated) by BMPs over the course of a 24-hour period under the critical 90th percentile storm condition. Additional volume would be *treated* by these BMPs, but that additional treatment is *implicit* to the reported Compliance Targets. ¹⁹ While the EWMP Implementation Plan reports the *total* BMP capacity to be implemented, that capacity is not a compliance target because some BMP capacities are sized to reflect a BMP program rather than sized to achieve the required reduction. For example, the BMPs implemented by the LID ordinance and the residential LID program were sized to retain the 85th percentile, 24-hour storm but that volume may be larger than is needed to achieve zinc RWLs. If those BMPs were replaced by a different type of BMP (e.g., regional BMP), the total BMP capacity may be smaller but just as effective. management in response to "lessons learned". As such, it is anticipated the BMP capacities within the various subcategories will be reported to the Regional Board but *not* tracked explicitly by the Regional Board for compliance determination. As BMPs are substituted over the course of EWMP implementation (e.g., replace green street capacity in a subwatershed with additional regional BMP capacity), the Group will show equivalency for achieving the corresponding Compliance Target. # 5.2 STORMWATER CONTROL MEASURES TO BE IMPLEMENTED BY 2040 FOR FINAL COMPLIANCE The EWMP will guide stormwater management for the coming decades, and the control measures to be implemented have the potential to transform communities including widespread green infrastructure. The EWMP Implementation Plan identifies the location and type of control measures to be implemented by each jurisdiction for final compliance by 2040, which includes to addressing all Water Quality Priorities including the limiting pollutants zinc and *E. coli* (as described in Section 4.2.4). The EWMP Implementation Plan for final compliance is presented as the following components: - Summary of total capacity of control measures to be implemented by each jurisdiction across the entire EWMP area: bar graphs are used to summarize the control measure capacities that comprise the EWMP Implementation Plan. Shown in Figure 5-1 are the bar graphs that detail the various sub-categories of control measures to be implemented by each jurisdiction across the entire EWMP area. - Summary of total capacity of control measures to be implemented <u>in each assessment area</u>: the control measures to be implemented within each watershed/assessment are shown in **Figure 5-2**, organized by jurisdiction. - Detailed recipe for compliance including volumes of stormwater to be managed and control measure capacities: the EWMP Implementation Plan is detailed for each subwatershed in the EWMP area (generally 1 to 2 square mile drainages). Shown in Figure 5-3 is a map of the "density" of control measure capacities to be implemented to address metals and other Water Quality Priorities (through controlling zinc) and Figure 5-4 shows the additional capacity to address *E. coli*. The maps are shown in detailed tables in Appendix D-1 which present for each jurisdiction the volumes of stormwater to be managed in each subwatershed (Compliance Targets) and the control measures to achieve those volume reductions (EWMP Implementation Plan). Separate Compliance Targets and EWMP Implementation Plans are provided for Metals and Other Water Quality Priorities and *E. coli*. For reference, the additional control measure capacity to address *E. coli*, beyond those needed for zinc is presented in Figure 5-5. The network of control measures in the EWMP Implementation Plan is extensive and its implementation would represent a sea change in how stormwater will be managed in the USGR. The next
subsection describes the timeline/sequencing for implementing the EWMP Implementation Plan. The costs and financial strategy for the EWMP are presented in **Section 7**. Figure 5-1 USGR EWMP Implementation Plan for Final Compliance by 2040 The two panels show the total structural BMP capacity required for each USGR EWMP jurisdiction to attain RWLs. The top panel groups the BMP types into LID, green streets and regional BMPs, while the bottom panel provides more resolution for the BMP subcategories. **Contributing EWMP Jurisdictions** Figure 5-2 EWMP Implementation Plan for each Watershed / Assessment Area in the USGR This figure shows the same control measure capacities as the previous figure, except organized by watershed / assessment area. Figure 5-2 (continued) EWMP Implementation Plan for each Watershed / Assessment Area in the USGR Figure 5-3 EWMP Implementation Plan by Subwatershed for Metals and Other Water Quality Priorities (except *E. coli*) This map presents the EWMP Implementation Plan for Metals and Other Water Quality Priorities as control measure "density" by subwatershed. The BMP density is higher in some areas [dark blue] because either [1] relatively high load reductions are required or [2] BMPs in those areas were relatively cost-effective (e.g., due to high soil infiltration rates). The BMP capacities are normalized by area (i.e., the BMP capacity for each subwatershed [in units of acre-feet] was divided by the subwatershed area [in units of acres] to express the BMP capacity in units of depth [inches]). The tabular version of this map is presented as a series of tables in in **Appendix D-2**. Note that while all jurisdictions in an assessment area/watershed are held to an equivalent % reduction, subwatersheds within a jurisdiction may have variable reductions based on optimization (another reason why some subwatersheds within a jurisdiction are dark blue while others are light blue). Figure 5-4 Additional Control Measures in EWMP Implementation Plan to Address *E. coli* This map uses the same approach as **Figure 5-4** to presents the additional capacity in the EWMP Implementation Plan to address *E. coli* (beyond the control measures to be implemented to address Metals and Other Water Quality Priorities). Note the BMP capacities are much less than in **Figure 5-4** because the control measures for Metals and Other Water Quality Priorities retain much of the critical bacteria storm. Some subwatersheds are not shaded because zero additional capacity is required. The tabular version of this map is presented as a series of tables in in **Appendix D-2**. Figure 5-5 Additional Control Measures in EWMP Implementation Plan to Address *E. coli* # 5.3 SCHEDULING OF STORMWATER CONTROL MEASURES TO ACHIEVE EWMP AND TMDL MILESTONES As described in Section 2, scheduling of control measure implementation by the EWMP Implementation Plan is based on the milestones of the SGR Metals TMDL and an additional implementation period to address Puddingstone Reservoir TMDLs by 2032 and SGR-wide *E. coli* impairments by 2040, as follows: - Achieve 10% of the reduction for zinc²¹ (2017) - Achieve 35% of the reduction for zinc (2020) - Achieve 65% of the reduction for zinc (2023) - Final compliance with zinc RWLs (2026) - Final compliance with nutrient and toxics RWLs in Puddingstone (2032) - Final compliance with bacteria WQBELs (2040)²² The scheduling of the EWMP Implementation Plan is presented as the following components: • Summary of control measure capacities to be implemented by each jurisdiction by assessment area/watershed: the LID, green streets and regional BMP capacities that will be ²¹ While these milestones are expressed as reduction in zinc, because zinc is a limiting pollutant (see Section 4.2.4), achievement of zinc RWLs by these dates assures an even greater reduction in all metals and other Water Quality Priority pollutants (except *E. coli*). ²² The compliance date of 2040 is selected for attainment of bacteria WQBELs matches the timeline used for the LA River Bacteria TMDL (25 years for wet weather compliance). implemented over time to achieve milestones are shown in **Figure 5-6**. Separate panels are shown for each assessment area/watershed – San Gabriel River (mainstem), Coyote Creek, San Jose Creek, Puente Creek and Walnut Creek. • Detailed scheduling for each jurisdiction including volumes of stormwater to be managed and control measure capacities: detailed tables that present the scheduling by assessment area and jurisdiction including volumes of stormwater (Compliance Targets) to be managed are presented in Appendix D-3. Each jurisdiction has a standalone recipe for each assessment area/watershed. The pace of implementation for the EWMP Implementation Plan is rapid due to the milestones of the SGR Metals TMDL. The pace of implementation is directly proportional to required internal and financial resources, and the additional required resource to implement the EWMP will be significant. The costs and financial strategy for the EWMP are presented in **Section 7**. Figure 5-6 Scheduling of EWMP Implementation Plan to Achieve EWMP / TMDL Milestones This panel presents the LID, green streets and regional BMP capacities to be implemented by each jurisdiction in San Gabriel River (mainstem). The bold number is the total capacity. Figure 5-6 (continued) Scheduling of EWMP Implementation Plan to Achieve EWMP / TMDL Milestones This panel presents the LID, green streets and regional BMP capacities to be implemented by each jurisdiction in Walnut Creek. The bold number is the total capacity. Figure 5-6 (continued) Scheduling of EWMP Implementation Plan to Achieve EWMP / TMDL Milestones This panel presents the LID, green streets and regional BMP capacities to be implemented by each jurisdiction in San Jose Creek (top) and Puente Creek (bottom). The bold number is the total capacity. Figure 5-6 (continued) Scheduling of EWMP Implementation Plan to Achieve EWMP / TMDL Milestones This panel presents the LID, green streets and regional BMP capacities to be implemented by Unincorporated LA County in Coyote Creek (top) and Puddingstone Reservoir (bottom). The bold number is the total capacity. #### 5.4 NON-STORMWATER CONTROL MEASURES The MS4 permit effectively prohibits non-stormwater discharges and the SGR Metals TMDL includes milestones for attainment of dry weather RWLs. The EWMP Implementation Plan has assurance of eliminating non-stormwater discharges through implementation of the network of wet weather control measures. As shown in **Figure 5-7**, the EWMP Implementation Plan achieves 100% elimination of non-stormwater flows by 2040. The dry weather milestones of the SGR Metals TMDL have assurance of being addressed for the following reasons: - 1. During dry weather, exceedances of metals RWLs are rare, as described in Section 4.2.4. As such, existing MCMs and control measures have reasonable assurance of attaining metals RWLs (see **Table 4-5**). - 2. By 2020, which is the 70% reduction milestone of the Metals TMDL, between 44% and 66% of non-stormwater flows will be completely eliminated. - 3. By 2023, which the final compliance date for the Metals TMDL, approximately 70% of non-stormwater flows will be eliminated in USGR, which is sufficient for TMDL attainment. - 4. By 2026, the final dry weather compliance date in the draft SGR Bacteria TMDL, between 62% and 82% of non-stormwater flows will be eliminated in USGR, which is sufficient for TMDL attainment. - 5. The non-stormwater screening, investigation and abatement programs being conducted under the CIMP for the Group will increase the rate of eliminating non-stormwater flows beyond the reductions provided by the control measures of the EWMP Implementation Plan. In other words, the non-stormwater abatement programs provide a "margin of safety" for the assurance demonstrated in **Figure 5-7**. - 6. An additional margin of safety is provided by the assumed outdoor water use in the dry weather RAA (**Appendix D-2**). The non-stormwater volumes in the non-stormwater analysis were based on existing median outdoor water use rates. Most water supply agencies have initiatives to significantly reduce outdoor water use in the coming years and thus the rate of elimination of non-stormwater flows should be more rapid than shown in **Figure 5-7**. Overall, the EWMP Implementation Plan and related non-stormwater reduction programs are expected to effectively eliminate non-stormwater flows in USGR Figure 5-7 Schedule for Eliminating Non-Stormwater Discharges in USGR The figure shows the effect of the EWMP Implementation Plan on non-stormwater discharges in USGR. The top panel shows the schedule for volume reductions in non-stormwater discharges, while the bottom panel shows the non-stormwater volumes remaining. Over time, the wet weather control measures will eliminate non-stormwater discharges. The reductions to be achieved by the dry weather compliance dates from the SGR Metals TMDL are sufficient to achieve the milestones. ## 6 Assessment and Adaptive Management Framework The EWMP is intended to be implemented as an adaptive program. As new program elements are implemented and information is gathered over time, the EWMP will undergo modifications to reflect the most current understanding of the watershed and present a sound approach to addressing changing conditions. As such, the EWMP will employ an adaptive management process that will allow the EWMP to evolve over time. Part VI.C.8 of the Permit details the adaptive management process to be included in the EWMP that includes the following requirements: - i. Permittees shall adapt the EWMP to become more effective every two years from the date of program approval based on, but not limited to a consideration of: - (1) progress toward achieving WQBELs and/or RWLs; - (2) Permittee monitoring data; - (3) achievement of interim milestones; - (4) re-evaluation of water quality priorities and source assessment; -
(5) non-Permittee monitoring data; - (6) Regional Board recommendations; and - (7) Recommendations through a public participation process. - ii. Permittees shall report any modifications to the EWMP in the annual report. - iii. Permittees shall implement any modifications to the EWMP upon approval by the Regional Board or within 60 days of submittal if the Regional Board expresses no objections. #### 6.1 ADAPTIVE MANAGEMENT PROCESS As new program elements are implemented and information is gathered over time, the EWMP will undergo modifications to reflect the most current understanding of the watershed and present a sound approach to address changing conditions. The adaptive management process includes a re-evaluation of water quality priorities, an updated source assessment, an effectiveness assessment of watershed control measures, and a RAA. The CIMP will gather additional data on receiving water conditions and stormwater/non-stormwater quality to inform these analyses. This process will be repeated every two years as part of the adaptive management process. #### 6.1.1 Re-characterization of Water Quality Priorities Water quality within the WMP area will be re-characterized using data collected as a result of the CIMP implementation to include the most recent data available. WBPCs may be updated as a result of changing water quality. These classifications will be important for refocusing improvement efforts and informing the selection of future watershed control measures. #### 6.1.2 Source Assessment Re-evaluation The assessment of possible sources of water quality constituents will be re-evaluated based on new information from the CIMP implementation efforts. The identification of non-MS4 and MS4 pollutant sources is an essential component of the WMP because it determines whether the source can be controlled by watershed control measures. As further monitoring is conducted and potential sources are better understood, the assessment becomes more accurate and informed. #### 6.1.3 Effectiveness Assessment of Watershed Control Measures The evaluation of BMP effectiveness is an important part of the adaptive management process and the overall WMP. Implementation of the CIMP can provide a quantitative assessment of structural BMP effectiveness as it relates to actual pollutant load reduction to determine how selected BMPs have performed at addressing established water quality priorities. In addition, the adaptive management process is a required step for the customization of MCMs as detailed in Section 4. Effectiveness assessment becomes important for the selection of future control measures to be considered. #### 6.1.4 Update of Reasonable Assurance Analysis The data gathered as a result of the CIMP will support adaptive management at multiple levels, including (1) generating data not previously available to support model updates and (2) tracking improvements in water quality over the course of WMP implementation. As described in Section 5, the RAA is an iterative process that depends on the continuous refinement and calibration of the watershed models used. #### 6.1.4.1 RAA Adaptive Management Considerations While the BMP representation in the model is based upon the latest data, tailored to specific agency preferences, and designed for optimization, the following limitations should be noted: - **BMP Opportunity Input Data** Identifying watershed-wide BMP opportunities is based upon GIS layers, such as land ownership, street types, and soil contamination. While these data are useful, more details about the suitability of each site (e.g., GIS layers of parkway widths, BMP barriers) may be necessary to further screen or prioritize opportunities especially for green streets and regional projects. - Model Resolution Input parameters for the model are set up and summarized at the subwatershed scale. While this is helpful for computational efficiency, this also ensures that the analysis does not outstrip the resolution and accuracy of the data. As a result of this resolution, BMP opportunities are lumped together in hundreds of parcels or streets. This may ignore the fact that some opportunities at the sub-subwatershed scale are superior to others. It is likely that more refined strategic identification of project-scale opportunities could yield significant cost savings for BMP implementation. - **Design Assumptions** Routing, drainage areas, and site-scale BMP footprints are generally assumed to be uniform for individual BMP types. Many BMPs are represented as "typical" versions of green infrastructure or regional BMPs throughout the watershed (with the notable exception of Tier 1 regional BMPs). It is likely that the range of BMP implementation will vary greatly to include high- and low-efficiency versions of the typical representation at the site scale. These limitations provide ample opportunity for adaptive management and are possible focus areas for constructive feedback and data collection that might further improve the efficiency of BMP implementation and reduce the overall costs of the EWMP. Specifically, as the EWMP is implemented over time, it is likely that refined strategies will identify a different suite of opportunities or a divergent BMP design from that which was assumed for the RAA. It will, therefore, be necessary to track BMP implementation so adjustments can be made when checking progress towards compliance with the EWMP water quality objectives. An example of how this might work is provided below. #### Adaptive Management Example **Figure 6-2** defines the current EWMP compliance recipe for subwatershed 516442 (per **Appendix D-1**) with a series of example adaptive management scenarios. The table is split to emphasize that the compliance targets (on the left-hand side) are BMP goals, which may be updated based on monitoring data from the CIMP, and the plan (on the right-hand side) may be adjusted through adaptive management. The objective is for each agency to meet the compliance target of capturing a certain amount of runoff in a 24-hour period (left-hand side) with a suite of BMPs. The right-hand side represents the "optimized" suite of BMPs identified by the model based on the assumptions described in Section 4. However, as discussed above, there remains ample opportunity to improve and/or customize the BMP opportunities and design assumptions in such a way that the overall constructed size (and associated cost) of the suite of BMPs shrinks. For subwatershed 516442 (the top portion of **Figure 6-2**), note that the plan currently identifies 2.00 acft of storage necessary for green streets. Consider Adaptive Management Scenario 1 – a hypothetical example scenario where a street-scale analysis reveals that an additional 2 ac-ft of high-efficiency green street opportunities exist in the subwatershed, bringing the total green street implementation to 4.00 ac-ft. The Scenario 1 row in **Figure 6-2** demonstrates how this additional green street capacity can offset the need for other BMPs in the subwatershed; in this case, Tier 2 regional capacity. It is important to realize, however, that an even exchange of BMP volumes between programs is not appropriate (e.g. green street capacity increases by 2 ac-ft, but Tier 2 regional capacity is reduced by nearly 4 ac-ft). This discontinuity exists because (1) green streets perform differently than regional BMPs, (2) the BMPs treat different land uses, and (3) the BMPs experience different infiltration rates. Adaptive management therefore requires a reasonable assurance "translator" to demonstrate that, together, the new suite opportunities satisfy the compliance goals on the left-hand side of the table (particularly when filtration practices remove pollutants but do not reduce a commensurate amount of runoff volume). Taking the example a step further, Scenario 2 demonstrates a scenario where residential LID programs progress at twice the pace assumed in the RAA (a hypothetical adoption rate of 2 percent of residential parcels per year versus the planned 1 percent). The additional capacity offsets the required regional capacity for metals compliance in lieu of constructing regional BMPs on private parcels. Again in this scenario, the additional residential volume (0.4 ac-ft) translates to an offset of 0.23 ac-ft of regional capacity because residential LID perched high in the watershed is less efficient per unit volume than regional BMPs located near the subwatershed outlet. Despite requiring double the structural capacity, substantial cost savings could be realized from this hypothetical adaptive management scenario because the unit cost of residential LID is less than 5 percent that of private regional BMPs. In Scenario 3, consider a situation where a private parcel is acquired at the outlet of the subwatershed. Assuming redevelopment and residential LID will progress in the subwatershed regardless of other control measures; a BMP could be installed on the private parcel and optimized to satisfy the remaining compliance target runoff volume, eliminating the need for any other remaining BMPs in the subwatershed. The upstream BMPs are not perfectly efficient, yet the cumulative BMP capacity is less than the 24-hour compliance target due to infiltration in the BMP during storm events. In this scenario the overall construction, operational, and maintenance costs for BMPs would be greatly reduced for this subwatershed. The above scenarios provide only a handful of examples where adaptive management can significantly improve implementation efficiency and reduce EWMP implementation costs. It is anticipated that, over the course of implementation, agencies will continue to innovate, customize BMP configurations, and strategically locate BMP opportunities that will shrink the overall burden of BMP implementation. This adaptive management must rely on tools that can easily translate between BMP volumes to assure that changes in the implementation plan relate
back to the intent of the EWMP. #### 6.2 REPORTING Annual reporting will be completed each year as part of the CIMP. In additional to assessing the overall progress of the WMP, the CIMP reporting will detail the implemented BMPs and demonstrate the cumulative BMP capacities achieve the interim targets. Data obtained through CIMP monitoring will be used to determine the overall effectiveness of the EWMP and will the next phases of EWMP implementation during the adaptive management process. **Figure 6-1** below shows the CIMP monitoring locations. Figure 6-1 CIMP Monitoring Locations Figure 6-2 Hypothetical Alternative Scenarios for Subwatershed 516442 to Attain the Compliance Targets # 7 EWMP Implementation Costs and Financial Strategy The purpose of this section is to present the financial strategy for addressing the additional costs of compliance with the 2012 MS4 permit as a result of the extensive set of BMPs or "recipe for compliance", identified in Section 6. The definition of a financial strategy varies across industries. In the context of the EWMP, the financial strategy is deemed to represent the strategic options available to the permittees for financing the program costs associated with the new MS4 Permit. This section identifies the estimated order-of-magnitude cost of the activities, and potential funding options that the EWMP Group will be pursuing to fund the program. #### 7.1 BASIS OF EWMP COST ESTIMATES The costs for structural BMPs provided here are considered to be planning level only (order of magnitude), and can be refined as EWMP implementations progresses with the use of actual BMP implementation costs. The following assumptions were made when developing the costs for EWMP implementation: - BMP capacity is assumed to be constructed at an even rate between BMP milestones. - BMP geometry based on typical values for each type, as discussed in Section 3. - Costs provided are in 2015 dollars. - Costs for enhanced minimum control measures and other institutional BMPs have not been included. - Routine maintenance was assumed to occur annually, while intermittent maintenance activities were assume to occur every four years. - Replacement costs were not considered under the assumption that systems will be properly maintained and functional throughout and beyond the implementation schedule. The costs are based on generic, modular cost functions developed for various BMP types specific to Los Angeles County. For structural BMP projects, costs include planning, design, permits, construction, operation and maintenance (O&M), and post construction monitoring. To support BMP optimization, cost functions were developed for each type of structural BMP. A summary of the BMP cost functions, expressed as a function of BMP geometry is presented in **Table 7-1**. Functions for Estimating Total Costs 1 **BMP BMP types** Category **Capital Costs** Annual O&M Cost = 9.438 (A) + 2.165 (Vt) +Bioretention with Underdrain Cost = 2.54 (A)2.64 (Vm) + 3.3 (Vu)Cost = 9.438 (A) + 2.165 (Vt) +Cost = 2.54 (A)Bioretention without Underdrain LID and 2.64 (Vm) Green Residential LID Cost = 4.000 (A)Streets Permeable Pavement with Underdrain Cost = 65.849 (A) + 3.3 (Vu)Cost = 1.74 (A)Permeable Pavement without Cost = 57.599 (A)Cost = 1.74 (A)Underdrain Pump $Cost = 56,227*(Pump\ Capacity_{cfs}) + $1,207,736$ Cost = 10.01 (A) + 2.296 (Vt) +Regional Regional Project on Public Parcel Cost = 1.918 (A)2.8 (Vm) **BMPs** Cost = 10.01 (A) + 2.296 (Vt) +Regional Project on Private Parcel Cost = 1.918 (A)2.8 (Vm) + 139.01 (A) Table 7-1 Summary of BMP Cost Functions for Final Compliance RAA #### 7.2 ESTIMATED EWMP PROGRAM COSTS The EWMP described in earlier sections of this document identifies a variety of watershed control measures (BMPs) including non-structural methods, regional projects, and distributed projects. The purpose of this section is to present the order-of-magnitude cost estimates to implement the EWMP including all of the various BMPs. The estimated costs are based on the total structural BMP capacity of the USGR EWMP implementation plan of 1,120 acre-feet, which is equivalent to the volume of nearly four Rose Bowl stadiums. **Appendix D-1** provides the summaries of BMP capacities for each jurisdiction by assessment area. Based on the cost functions, the total cost through full implementation including O&M is at approximately \$2 billion. **Table 7-2** and **Figure 7-1** provide a cost estimate summary, and **Table 7-3** through **Table 7-8** and **Figure 7-2** and **Figure 7-3** provide a breakdown by jurisdiction. The costs provided here are considered to be planning level only (order of magnitude), and can be refined as EWMP implementations progresses with the use of actual BMP implementation costs. ^{1 –} Formulas describe annualized life cycle costs including routine and intermittent O&M using the following variables: (A) is the area of the BMP footprint in square feet, (Vt) is the total volume of the BMP in cubic feet, (Vm) is the volume of the BMP soil media in cubic feet, and (Vu) is the volume of the BMP underdrain in cubic feet. ^{2 –} The resolution of WMMS output precludes the certain estimation of pump station quantity and capacity. Note that incidental costs associated with pump station operation will likely be incurred during implementation. Table 7-2 EMWP Implementation Cost Summary by Jurisdiction | Jurisdiction | Total BMP Capacity
(acre-feet) | To | tal Capital Costs | To | tal O&M Costs | Total Cost of nplementation | |------------------|-----------------------------------|----|-------------------|----|---------------|-----------------------------| | Baldwin Park | 96 | \$ | 98,186,202 | \$ | 86,068,895 | \$
184,255,097 | | Covina | 97 | \$ | 62,708,990 | \$ | 85,369,309 | \$
148,078,299 | | Glendora | 108 | \$ | 114,740,224 | \$ | 106,174,045 | \$
220,914,269 | | Industry | 201 | \$ | 307,629,945 | \$ | 143,270,089 | \$
450,900,034 | | La Puente | 62 | \$ | 71,893,848 | \$ | 57,652,072 | \$
129,545,920 | | Uninc. LA County | 554 | \$ | 418,239,813 | \$ | 474,132,246 | \$
892,372,059 | | Grand Total | 1,119 | \$ | 1,073,399,021 | \$ | 952,666,657 | \$
2,026,065,679 | Figure 7-1 EWMP Implementation Cost Breakdown Table 7-3 EWMP Implementation Cost for Baldwin Park | Jurisdiction | Cumulative Total Capacity | Annual Capital
Costs | Annual O&M | Total Annual Costs | |--------------|---------------------------|-------------------------|--------------|--------------------| | Baldwin Park | | | | | | 2016 | 0.0 | \$ - | \$ - | \$ - | | 2017 | 0.0 | \$ - | \$ - | \$ - | | 2018 | 6.7 | \$ 2,300,642 | \$ 363,653 | \$ 2,664,295 | | 2019 | 13.3 | \$ 2,300,642 | \$ 727,306 | \$ 3,027,947 | | 2020 | 20.0 | \$ 2,300,642 | \$ 1,090,959 | \$ 3,391,600 | | 2021 | 29.4 | \$ 5,343,866 | \$ 1,596,841 | \$ 6,940,707 | | 2022 | 38.7 | \$ 5,343,866 | \$ 2,102,724 | \$ 7,446,590 | | 2023 | 48.1 | \$ 5,343,866 | \$ 2,608,607 | \$ 7,952,473 | | 2024 | 60.9 | \$ 17,599,483 | \$ 3,258,520 | \$ 20,858,003 | | 2025 | 73.7 | \$ 17,599,483 | \$ 3,908,434 | \$ 21,507,917 | | 2026 | 86.4 | \$ 17,599,483 | \$ 4,558,347 | \$ 22,157,830 | | 2027 | 87.1 | \$ 1,603,873 | \$ 4,577,744 | \$ 6,181,617 | | 2028 | 87.8 | \$ 1,603,873 | \$ 4,597,140 | \$ 6,201,014 | | 2029 | 88.5 | \$ 1,603,873 | \$ 4,616,537 | \$ 6,220,410 | | 2030 | 89.2 | \$ 1,603,873 | \$ 4,635,934 | \$ 6,239,807 | | 2031 | 89.9 | \$ 1,603,873 | \$ 4,655,330 | \$ 6,259,204 | | 2032 | 90.6 | \$ 1,603,873 | \$ 4,674,727 | \$ 6,278,600 | | 2033 | 91.3 | \$ 1,603,873 | \$ 4,694,123 | \$ 6,297,997 | | 2034 | 92.0 | \$ 1,603,873 | \$ 4,713,520 | \$ 6,317,394 | | 2035 | 92.7 | \$ 1,603,873 | \$ 4,732,917 | \$ 6,336,790 | | 2036 | 93.4 | \$ 1,603,873 | \$ 4,752,313 | \$ 6,356,187 | | 2037 | 94.1 | \$ 1,603,873 | \$ 4,771,710 | \$ 6,375,584 | | 2038 | 94.8 | \$ 1,603,873 | \$ 4,791,107 | \$ 6,394,980 | | 2039 | 95.5 | \$ 1,603,873 | \$ 4,810,503 | \$ 6,414,377 | | 2040 | 96.2 | \$ 1,603,873 | \$ 4,829,900 | \$ 6,433,773 | | | | | Total | \$ 184,255,097 | Table 7-4 EWMP Implementation Cost for Covina | Jurisdiction | Cumulative Total
Capacity | Annual Capital
Costs | Annual O&M | Total Annual Costs | |--------------|------------------------------|-------------------------|--------------|--------------------| | Covina | | | | \$ - | | 2016 | 0.0 | \$ - | \$ - | \$ - | | 2017 | 0.0 | \$ - | \$ - | \$ - | | 2018 | 5.5 | \$ 1,753,436 | \$ 261,627 | \$ 2,015,063 | | 2019 | 11.0 | \$ 1,753,436 | \$ 523,253 | \$ 2,276,690 | | 2020 | 16.5 | \$ 1,753,436 | \$ 784,880 | \$ 2,538,316 | | 2021 | 26.7 | \$ 3,270,231 | \$ 1,263,694 | \$ 4,533,925 | | 2022 | 36.9 | \$ 3,270,231 | \$ 1,742,508 | \$ 5,012,739 | | 2023 | 47.1 | \$ 3,270,231 | \$ 2,221,322 | \$ 5,491,553 | | 2024 | 60.5 | \$ 8,520,325 | \$ 3,029,804 | \$ 11,550,129 | | 2025 | 73.9 | \$ 8,520,325 | \$ 3,838,285 | \$ 12,358,610 | | 2026 | 87.3 | \$ 8,520,325 | \$ 4,646,767 | \$ 13,167,092 | | 2027 | 88.0 | \$ 1,576,930 | \$ 4,665,838 | \$ 6,242,767 | | 2028 | 88.7 | \$ 1,576,930 | \$ 4,684,909 | \$ 6,261,838 | | 2029 | 89.4 | \$ 1,576,930 | \$ 4,703,979 | \$ 6,280,909 | | 2030 | 90.1 | \$ 1,576,930 | \$ 4,723,050 | \$ 6,299,980 | | 2031 | 90.8 | \$ 1,576,930 | \$ 4,742,121 | \$ 6,319,050 | | 2032 | 91.5 | \$ 1,576,930 | \$ 4,761,192 | \$ 6,338,121 | | 2033 | 92.1 | \$ 1,576,930 | \$ 4,780,262 | \$ 6,357,192 | | 2034 | 92.8 | \$ 1,576,930 | \$ 4,799,333 | \$ 6,376,263 | | 2035 | 93.5 | \$ 1,576,930 | \$ 4,818,404 | \$ 6,395,334 | | 2036 | 94.2 | \$ 1,576,930 | \$ 4,837,475 | \$ 6,414,404 | | 2037 | 94.9 | \$ 1,576,930 | \$ 4,856,546 | \$ 6,433,475 | | 2038 | 95.6 | \$ 1,576,930 | \$ 4,875,616 | \$ 6,452,546 | | 2039 | 96.2 | \$ 1,576,930 | \$ 4,894,687 | \$ 6,471,617 | | 2040 | 96.9 | \$ 1,576,930 | \$ 4,913,758 | \$ 6,490,688 | | | | | Total | \$ 148,078,299 | Table 7-5 EWMP Implementation Cost for Glendora | Jurisdiction | Cumulative Total
Capacity | Annual Capital
Costs | Annual O&M | Total Annual
Costs | |--------------|------------------------------|-------------------------|--------------|--------------------| | Glendora | | | | \$ - | | 2016 | 0.0 | \$ - | \$ - | \$ - | | 2017 | 0.0 | \$ - | \$ - | \$ - | | 2018 | 6.9 | \$ 2,513,142 | \$ 408,049 | \$ 2,921,191 | | 2019 | 13.8 | \$ 2,513,142 | \$ 816,099 | \$ 3,329,241 | | 2020 | 20.7 | \$ 2,513,142 | \$ 1,224,148 | \$ 3,737,290 | | 2021 | 33.0 | \$ 8,446,603 | \$ 1,959,852 | \$ 10,406,455 | | 2022 | 45.2 | \$ 8,446,603 | \$ 2,695,555 | \$ 11,142,158 | | 2023 | 57.5 | \$ 8,446,603 | \$ 3,431,258 | \$ 11,877,861 | | 2024 | 71.4 | \$ 20,614,681 | \$ 4,170,677 | \$ 24,785,358 | | 2025 | 85.4 | \$ 20,614,681 | \$ 4,910,096 | \$ 25,524,777 | | 2026 | 99.3 | \$ 20,614,681 | \$ 5,649,515 | \$ 26,264,196 | | 2027 | 99.9 | \$ 1,429,782 | \$ 5,666,807 | \$ 7,096,589 | | 2028 | 100.6 | \$ 1,429,782 | \$ 5,684,098 | \$ 7,113,880 | | 2029 | 101.2 | \$ 1,429,782 | \$ 5,701,389 | \$ 7,131,171 | | 2030 | 101.8 | \$ 1,429,782 | \$ 5,718,680 | \$ 7,148,462 | | 2031 | 102.4 | \$ 1,429,782 | \$ 5,735,972 | \$ 7,165,754 | | 2032 | 103.0 | \$ 1,429,782 | \$ 5,753,263 | \$ 7,183,045 | | 2033 | 103.7 | \$ 1,429,782 | \$ 5,770,554 | \$ 7,200,336 | | 2034 | 104.3 | \$ 1,429,782 | \$ 5,787,845 | \$ 7,217,627 | | 2035 | 104.9 | \$ 1,429,782 | \$ 5,805,136 | \$ 7,234,918 | | 2036 | 105.5 | \$ 1,429,782 | \$ 5,822,428 | \$ 7,252,210 | | 2037 | 106.1 | \$ 1,429,782 | \$ 5,839,719 | \$ 7,269,501 | | 2038 | 106.8 | \$ 1,429,782 | \$ 5,857,010 | \$ 7,286,792 | | 2039 | 107.4 | \$ 1,429,782 | \$ 5,874,301 | \$ 7,304,083 | | 2040 | 108.0 | \$ 1,429,782 | \$ 5,891,593 | \$ 7,321,375 | | | | | Total | \$ 220,914,269 | Table 7-6 EWMP Implementation Cost for Industry | Jurisdiction | Cumulative Total
Capacity | Annual Capital
Costs | Annual O&M | Total Annual Costs | |--------------|------------------------------|-------------------------|--------------|--------------------| | Industry | Gapacity | 00313 | Aimairoam | \$ - | | 2016 | 0.0 | \$ - | \$ - | \$ - | | 2017 | 0.0 | \$ - | \$ - | \$ - | | 2018 | 14.0 | \$ 5,516,847 | \$ 644,655 | \$ 6,161,502 | | 2019 | 28.0 | \$ 5,516,847 | \$ 1,289,310 | \$ 6,806,157 | | 2020 | 42.0 | \$ 5,516,847 | \$ 1,933,965 | \$ 7,450,812 | | 2020 | 64.3 | \$ 35,839,158 | \$ 2,804,944 | \$ 38,644,103 | | 2022 | 86.6 | \$ 35,839,158 | \$ 3,675,924 | \$ 39,515,082 | | 2022 | 108.8 | \$ 35,839,158 | \$ 4,546,903 | \$ 40,386,061 | | 2023 | 133.9 | \$ 48,020,707 | \$ 4,546,903 | \$ 40,386,061 | | 2024 | 159.0 | | | | | | | \$ 48,020,707 | | | | 2026 | 184.1 | \$ 48,020,707 | \$ 7,515,298 | \$ 55,536,005 | | 2027 | 185.3 | \$ 2,821,415 | \$ 7,549,419 | \$ 10,370,834 | | 2028 | 186.5 | \$ 2,821,415 | \$ 7,583,540 | \$ 10,404,955 | | 2029 | 187.7 | \$ 2,821,415 | \$ 7,617,661 | \$ 10,439,076 | | 2030 | 189.0 | \$ 2,821,415 | \$ 7,651,782 | \$ 10,473,197 | | 2031 | 190.2 | \$ 2,821,415 | \$ 7,685,904 | \$ 10,507,318 | | 2032 | 191.4 | \$ 2,821,415 | \$ 7,720,025 | \$ 10,541,440 | | 2033 | 192.6 | \$ 2,821,415 | \$ 7,754,146 | \$ 10,575,561 | | 2034 | 193.9 | \$ 2,821,415 | \$ 7,788,267 | \$ 10,609,682 | | 2035 | 195.1 | \$ 2,821,415 | \$ 7,822,388 | \$ 10,643,803 | | 2036 | 196.3 | \$ 2,821,415 | \$ 7,856,509 | \$ 10,677,924 | | 2037 | 197.5 | \$ 2,821,415 | \$ 7,890,630 | \$ 10,712,045 | | 2038 | 198.8 | \$ 2,821,415 | \$ 7,924,751 | \$ 10,746,166 | | 2039 | 200.0 | \$ 2,821,415 | \$ 7,958,873 | \$ 10,780,287 | | 2040 | 201.2 | \$ 2,821,415 | \$ 7,992,994 | \$ 10,814,409 | | | | | Total | \$ 450,900,034 | Table 7-7 EWMP Implementation Cost for La Puente | | Cumulative Total | Annual Capital | | | |--------------|------------------|----------------|--------------|--------------------| | Jurisdiction | Capacity | Costs | Annual O&M | Total Annual Costs | | La Puente | | | | \$ - | | 2016 | 0.2 | \$ 60,949 | \$ 9,604 | \$ 70,553 | | 2017 | 0.4 | \$ 60,949 | \$ 19,208 | \$ 80,157 | | 2018 | 5.2 | \$ 1,743,057 | \$ 301,534 | \$ 2,044,591 | | 2019 | 9.9 | \$ 1,743,057 | \$ 583,859 | \$ 2,326,916 | | 2020 | 14.6 | \$ 1,743,057 | \$ 866,185 | \$ 2,609,242 | | 2021 | 21.3 | \$ 6,285,199 | \$ 1,208,602 | \$ 7,493,801 | | 2022 | 28.0 | \$ 6,285,199 | \$ 1,551,020 | \$ 7,836,218 | | 2023 | 34.7 | \$ 6,285,199 | \$ 1,893,437 | \$ 8,178,636 | | 2024 | 42.7 | \$ 13,168,165 | \$ 2,274,437 | \$ 15,442,602 | | 2025 | 50.7 | \$ 13,168,165 | \$ 2,655,437 | \$ 15,823,602 | | 2026 | 58.8 | \$ 13,168,165 | \$ 3,036,437 | \$ 16,204,602 | | 2027 | 59.0 | \$ 584,478 | \$ 3,043,506 | \$ 3,627,983 | | 2028 | 59.3 | \$ 584,478 | \$ 3,050,574 | \$ 3,635,052 | | 2029 | 59.5 | \$ 584,478 | \$ 3,057,643 | \$ 3,642,120 | | 2030 | 59.8 | \$ 584,478 | \$ 3,064,711 | \$ 3,649,189 | | 2031 | 60.1 | \$ 584,478 | \$ 3,071,780 | \$ 3,656,257 | | 2032 | 60.3 | \$ 584,478 | \$ 3,078,848 | \$ 3,663,326 | | 2033 | 60.6 | \$ 584,478 | \$ 3,085,917 | \$ 3,670,394 | | 2034 | 60.8 | \$ 584,478 | \$ 3,092,985 | \$ 3,677,463 | | 2035 | 61.1 | \$ 584,478 | \$ 3,100,053 | \$ 3,684,531 | | 2036 | 61.3 | \$ 584,478 | \$ 3,107,122 | \$ 3,691,600 | | 2037 | 61.6 | \$ 584,478 | \$ 3,114,190 | \$ 3,698,668 | | 2038 | 61.8 | \$ 584,478 | \$ 3,121,259 | \$ 3,705,736 | | 2039 | 62.1 | \$ 584,478 | \$ 3,128,327 | \$ 3,712,805 | | 2040 | 62.3 | \$ 584,478 | \$ 3,135,396 | \$ 3,719,873 | | | | | Total | \$ 129,545,920 | Table 7-8 EWMP Implementation Cost for Unincorporated Los Angeles County | | Cumulative Total | Annual Capital | 4 | T. (114 | |------------------|------------------|----------------|---------------|--------------------| | Jurisdiction | Capacity | Costs | Annual O&M | Total Annual Costs | | Uninc. LA County | | | | - | | 2016 | 0.0 | \$ - | \$ - | \$ - | | 2017 | 0.0 | \$ - | \$ - | \$ - | | 2018 | 24.8 | \$ 8,421,252 | \$ 1,314,779 | \$ 9,736,031 | | 2019 | 49.6 | \$ 8,421,252 | \$ 2,629,558 | \$ 11,050,810 | | 2020 | 74.4 | \$ 8,421,252 | \$ 3,944,337 | \$ 12,365,589 | | 2021 | 139.2 | \$ 30,324,819 | \$ 7,251,665 | \$ 37,576,483 | | 2022 | 203.9 | \$ 30,324,819 | \$ 10,558,992 | \$ 40,883,810 | | 2023 | 268.6 | \$ 30,324,819 | \$ 13,866,319 | \$ 44,191,138 | | 2024 | 348.6 | \$ 65,658,656 | \$ 17,810,342 | \$ 83,468,998 | | 2025 | 428.5 | \$ 65,658,656 | \$ 21,754,366 | \$ 87,413,022 | | 2026 | 508.5 | \$ 65,658,656 | \$ 25,698,389 | \$ 91,357,045 | | 2027 | 511.8 | \$ 7,501,831 | \$ 25,789,113 | \$ 33,290,944 | | 2028 | 515.0 | \$ 7,501,831 | \$ 25,879,838 | \$ 33,381,669 | | 2029 | 518.3 | \$ 7,501,831 | \$ 25,970,562 | \$ 33,472,393 | | 2030 | 521.5 | \$ 7,501,831 | \$ 26,061,286 | \$ 33,563,117 | | 2031 | 524.8 | \$ 7,501,831 | \$ 26,152,011 | \$ 33,653,842 | | 2032 | 528.0 | \$ 7,501,831 | \$ 26,242,735 | \$ 33,744,566 | | 2033 | 531.3 | \$ 7,501,831 | \$ 26,333,459 | \$ 33,835,290 | | 2034 | 534.6 | \$ 7,501,831 | \$ 26,424,184 | \$ 33,926,015 | | 2035 | 537.8 | \$ 7,501,831 | \$ 26,514,908 | \$ 34,016,739 | | 2036 | 541.1 | \$ 7,501,831 | \$ 26,605,632 | \$ 34,107,463 | | 2037 | 544.3 | \$ 7,501,831 | \$ 26,696,356 | \$ 34,198,187 | | 2038 | 547.6 | \$ 7,501,831 | \$ 26,787,081 | \$ 34,288,912 | | 2039 | 550.8 | \$ 7,501,831 | \$ 26,877,805 | \$ 34,379,636 | | 2040 | 554.1 | \$ 7,501,831 | \$ 26,968,529 | \$ 34,470,360 | | | | | Total | \$ 892,372,059 | Figure 7-2 Total Capital Cost by Jurisdiction Figure 7-3 Total EWMP Implementation Cost by Jurisdiction ### 7.3 FUNDING STRATEGIES A sound funding strategy, like an engineering or strategy for watershed management requires a coordinated regional approach,. Capital operating, and maintenance costs for watershed programs are significant and and often span decades. In addition, projects vary widely in complexity and cost. As such, there is no standardized strategy to finance these programs. Instead, the financial strategy presented in this EWMP outlines multiple approaches that will allow each permittee to select those strategies that best fit their specific circumstances and project. The detailed financial strategy for EWMP costs will be highly dependent and will vary between the permittees. Each permittee has different resources available; therefore, each one will use a different set of financing options to achieve their funding goals. The following are high-level, conceptual alternatives that can be further honed based on each permittees specific circumstances. The alternatives should all be examined as each permittee moves forward, either as an individual agency or within a group. All potential sources of revenue to implement the EWMP will be considered as a funding source for activities described in the EWMP. The following sections summarize the potential funding alternatives and are categorized by type. Acknowledgement is given to *Stormwater Funding Options – Providing Sustainable Water Quality Funding in Los Angeles County*, a report authored by Ken Farfsing and Richard Watson (May 21, 2014). # 7.3.1 EWMP Funding Subcommittee A key part of a successful financial strategy is the establishment of a EWMP subcommittee compromised of key financial representatives from each permittee. The purpose of the subcommittee is to discuss coordinated financial activities; evaluate the timing and overall level of project costs; and to address barriers to financial participation. Representatives on this subcommittee should have the authority to make decisions on behalf of their respective governments, subjected to final governmental approvals. Joint efforts in debt issuance, public outreach, and other activities take advantage of economies of scale and best available expertise; these advantages benefit all permittees, especially smaller agencies. # 7.3.2 Sanitation Districts of Los Angeles County 2015 Legislative Proposal Integral to any funding effort is the permittees' ability to receive funding and have authority over their stormwater. The Sanitation Districts of Los Angeles County (Districts) have put forth a 2015 Legislative Policy that reflects this goal. The proposed language would "supplement the existing powers of the Districts and would allow each
District to acquire, construct, operate, maintain, and furnish facilities..." in order to manage their stormwater. Specific purposes include: - Diversion of stormwater and dry weather runoff from the stormwater drainage system; - Management and treatment of stormwater and dry weather runoff; - Discharge of the water to the stormwater drainage system or receiving waters; and - The beneficial use of the water. The authority sought by the Districts will be key to them securing funding and properly financing their EWMP activities. As such, it will be key for the permittees as the law change would "cost effectively aid jurisdictions in complying with their stormwater related regulatory requirements." ### **7.3.3** Grants Grant opportunities available to the permittees include: ### **DESCRIPTION** Apply for grants through the recently passed Prop 1 – 2014 Water Bond. Over \$400M is available for stormwater capture, IRWMP and urban creek restoration projects. Apply for other grants (state and federal) for stormwater improvement, beach water quality improvement, and green infrastructure projects. (e.g. Prop. 84, CBI, etc.) ### 7.3.4 Fees and Charges The potential financial strategies available to the permittees associated with fees and charges are: ### **DESCRIPTION** Use existing revenue streams for stormwater/water supply/flood control projects to support stormwater quality projects AB 2403 – Use new state law to pass rate increase for stormwater projects that have a water supply benefit and minimize the Proposition 218 process. Use revenue generated from a Stormwater Impact Fee (or "In-Lieu" Fee) to comply with LID ordinances to fund mitigation bank for regional projects. Increase solid waste management fees to cover the cost of enhanced street sweeping and other measures to reduce trash for compliance with TMDLs. Consider adopting water conservation fees that would provide funding for reducing irrigated runoff in order to both conserve groundwater and reduce dry weather pollution. Consider assessments on car rentals since some of the pollution in our waterways is from cars driven on local streets. ### 7.3.5 Legislative and Policy The potential financial strategies available to the permittees that are more legislative and policy driven are: ### **DESCRIPTION** Continue to pursue a county-wide stormwater parcel tax initiative (modified after the 2012 Clean Water Clean Beaches Initiative). This could be tied to AB 2403 too. Develop stormwater retention credit trading market to use private equity. Ask the Metropolitan Water District (MWD) of Southern California to reevaluate their approach for managing the Local Resource Program (LRP) to fund stormwater capture and use projects that offset the use of imported water supplies. Pursue pollutant source control legislation patterned after SB 346 that either limits pollutants of concerns in products (e.g. copper in brake pads, or zinc in tires) or assesses a fee on those products that can be used by local governments to mitigate those pollutants. Form Special Assessment Districts and fees tailored to the Watershed Management Groups. Explore the use of Enhanced Infrastructure Finance Districts tailored to the Watershed Management Group, as outlined in recently adopted (2014) California legislation SB628. 2014 Water Resources Reform and Development Act of 2014 (WRRDA). Various funding opportunities should be explored. # 7.3.6 Next Steps The financial strategies mentioned herein are options for funding sources, some or all of which will need to be implemented to develop a comprehensive financial solution. As each Member determines the appropriate funding source, they will need to consider the following items as well: - Development of a more formal Stormwater Program Financial Plan which would typically include the following components: - o Implementation of New Fee or Charge at the State or local level; - Establishment of New Enterprise Fund; - Cash and Debt Financing; - Operating and Capital Reserves; - o Cash Flow Modeling. The Group as a whole, as well as individual members are currently prioritizing and selecting the specific financing strategies that best fit their needs. It is anticipated that a more fully developed financial plan will be developed and implemented by the Group and/or its individual members in the coming months and years that incorporates the future steps identified above. # 8 References - CREST Consulting Team. 2010. Los Angeles River Watershed Bacteria TMDL Technical Report Section 3: Numeric Targets. Prepared for CREST (Cleaner Rivers Through Effective Stakeholder-Led TMDLs - Hastie, C. 2003. *The Benefit of Urban Trees*. A summary of the benefits of urban trees accompanied by a selection of research papers and pamphlets. Warwick District Council. http://www.naturewithin.info/UF/TreeBenefitsUK.pdf. Accessed September 2010. - Kloss, Christopher; Crystal Calarusse. Rooftops to Rivers Green strategies for controlling stormwater and combined sewer overflows. Natural Resource Defense Council. June 2006. http://www.nrdc.org. - Kou, F., and W. Sullivan. 2001a. Environment and Crime in the Inner City: Does Vegetation Reduce Crime. *Environment and Behavior* 33(3):343–367. - Kuo, F., and W. Sullivan. 2001b. Aggression and Violence in the Inner City: Effects of Environment via Mental Fatigue. *Environment and Behavior* 33(4):543–571. - Kuo, F. 2003. The Role of Arboriculture in a Healthy Social Ecology. *Journal of Arboriculture* 29(3). - LACDPW (Los Angeles County Department of Public Works). 2006. Hydrology Manual. January 2006. - LACDPW (Los Angeles County Department of Public Works). 2010a. Los Angeles County Watershed Model Configuration and Calibration—Part I: Hydrology. Prepared for County of Los Angeles Department of Public Works, Watershed Management Division, Los Angeles County, CA, by Tetra Tech, Pasadena, CA. - LACDPW (Los Angeles County Department of Public Works). 2010b. Los Angeles County Watershed Model Configuration and Calibration—Part II: Water Quality. Prepared for County of Los Angeles Department of Public Works, Watershed Management Division, Los Angeles County, CA, by Tetra Tech, Pasadena, CA. - LACDPW (Los Angeles County Department of Public Works). 2013. Los Angeles County 2012-2013 Annual Stormwater Monitoring. December 12. - Northeastern Illinois Planning Commission (NIPC). 2004. Sourcebook on Natural Landscaping for Local Officials.http://www.nipc.org/environment/sustainable/naturallandscaping/natural%20landscaping%20sourcebook.pdf. Accessed September 2010. - RWQCB 2012. Water Discharge Requirements for Municipal Separate Storm Sewer Systems (MS4s) Discharges within the Coastal Watersheds of Los Angeles County, Except Those Discharges Originating from the City of Long Beach MS4. Order No. R4-2012-0175. NPDES No. CAS004001. December 6. - RWQCB. 2014. Guidelines for Conducting Reasonable Assurance Analysis in a Watershed Management Program, Including an Enhanced Watershed Management Program. LARWQCB, Los Angeles, CA. - Shen, J., A. Parker, and J. Riverson. 2004. A New Approach for a Windows-based Watershed Modeling System Based on a Database-supporting Architecture. Environmental Modeling and Software, July 2004. - Shultz, S., and N. Schmitz. 2008. How Water Resources Limit and/or Promote Residential Housing Developments in Douglas County. University of Nebraska-Omaha Research Center, Omaha, NE. http://unorealestate.org/pdf/UNO_Water_Report.pdf>. Accessed September 1, 2008. - Stenstrom, Michael K. and Haejin Lee. 2005. Final Report Industrial Storm Water Monitoring Program Existing Statewide Permit Utility and Proposed Modifications. Civil and Environmental Engineering Department, UCLA. Los Angeles, California. - Tetra Tech and USEPA (U.S. Environmental Protection Agency). 2002. The Loading Simulation Program in C++ (LSPC) Watershed Modeling System User's Manual. Tetra Tech, Fairfax, VA, and U.S. Environmental Protection Agency, Washington, DC. - Tetra Tech. 2010a. Los Angeles County Watershed Model Configuration and Calibration—Part I: Hydrology. Prepared for County of Los Angeles Department of Public Works, Watershed Management Division, Los Angeles County, CA, by Tetra Tech, Pasadena, CA. - Tetra Tech. 2010b. Los Angeles County Watershed Model Configuration and Calibration—Part II: Water Quality. Prepared for County of Los Angeles Department of Public Works, Watershed Management Division, Los Angeles County, CA, by Tetra Tech, Pasadena, CA. - USEPA (U.S. Environmental Protection Agency). 2003. Fact Sheet: Loading Simulation Program in C++. USEPA, Watershed and Water Quality Modeling Technical Support Center, Athens, GA. Available at: http://www.epa.gov/athens/wwqtsc/LSPC.pdf - USEPA (U.S. Environmental Protection Agency). 2009. SUSTAIN—A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water Quality. EPA/600/R-09/095. U.S. Environmental Protection Agency, Office of Research and Development, Edison, NJ. - Ward, B., E. MacMullan, and S. Reich. 2008. The Effect of Low-impact Development on Property Values. ECONorthwest, Eugene, Oregon. - Wolf, K. 2008. With Plants in Mind: Social Benefits of Civic Nature. www.MasterGardenerOnline.com. Winter 2008. - Wolf, K.1998. Urban Nature Benefits: Psycho-Social Dimensions of People and Plants. Human Dimension of the Urban Forest. Fact Sheet #1. Center for Urban Horticulture. University of Washington, College of Forest Resources. All appendices to the EWMP are available for review at the front counter of the City of Industry administrative offices or by email upon request to: jdballas@cityofindustry.org. CITY COUNCIL **ITEM NO. 6.2**
Consulting Civil Engineers · Surveyors # MEMORANDUM TO: Kevin Radecki, Executive Director DATE: June 11, 2015 FROM: Upendra Joshi Joshua Nelson JOB NO.: JN-9152 SUBJECT: Covenant and Agreement to Hold Property as One Parcel - 425 9th Avenue ShineShine Butter Company, LLC is the property owner of the land located west of Ninth Avenue and north of Don Julian Road, APN: 8208-002-023 and 8208-002-024. ShineShine has a single building with a portion of the parking lot and truck yard on an adjacent lot. The development should have always been one parcel. The lot coverage calculations have been calculated as if it was one. This covenant and agreement will be recorded against the land and shall run with the land unless otherwise released by authority of the City Engineer of the City of Industry. It is hereby recommended that the City Council approve the attached Covenant and Agreement to Hold Property as One Parcel and authorize the execution of the document by the appropriate persons. Please return the executed agreement for further processing. | By: | Upendra Joshi | Signature: South Wy. | |-----|-----------------|----------------------| | | Project Manager | | | By: | Joshua Nelson | Signature: | | | Project Manager | | UJ/JN:jv RECORDED AT THE REQUEST OF AND MAIL TO: City of Industry P.O. B ox 3366 City of Industry, CA 91744 Attention: Josh Nelson APN:8208-002-023, 8208-002-024 SPACE ABOVE THIS LINE FOR RECORDER'S USE | COVENANT AND AGREEMENT TO HOL | D PROPERTY AS ONE PARCEL | |---|---| | The undersigned hereby certify that we are the owner(s) of located in the City of Industry, County of Los Angeles, State | | | Per legal description, Exhibit "A" and as shown on a (legal descri | | | This covenant and agreement is executed for the purpose two Parcels as one | of <u>creating a single building site and holding</u> | | This property is located at and is known by the following as | ssessor's parcel numbers: | | 8208-002-023 and 8208-002-024 | | | JOB ADDRESS: | | | As regulated by Section 16.12.040 of the Industry Municipal said City that the above legally described land shall be held separately. This covenant and agreement shall run with the land and sencumbrancers, their successors, heirs, assignees and shall ndustry Municipal Code unconditionally permits the use or otherwise released by authority of the City Engineer of the | d as one parcel and no portion shall be sold shall be binding upon ourselves, and future owners all continue in effect until such time that the purpose herein above referred to or unless | | Dated this 12th day of June | , 20 <u>/5</u> . | | SUNSHINE BUTTER COMPANY, LLC by Hank Perkins | | | CITY OF INDU | JSTRY | | Mark Radecki – Mayor | Date | | Cecelia Dunlap – Deputy City Clerk | Date | # EXHIBIT 'A' # LEGAL DESCRIPTION THOSE PORTIONS OF LOTS 7 AND 8 OF BLOCK 18 OF TRACT NO. 1343, IN THE CITY OF INDUSTRY, COUNTY OF LOS ANGELES, STATE OF CALIFORNIA, AS PER MAP RECORDED IN BOOK 20, PAGES 10 AND 11 OF MAPS, IN THE OFFICE OF THE COUNTY SAID COUNTY, DESCRIBED AS FOLLOWS: BEGINNING AT THE NORTHEASTERLY CORNER OF SAID LOT 8; THENCE ALONG THE NORTHEASTERLY LINE OF SAID LOT 8, NORTH 50 DEGREES 39 MINUTES 28 SECONDS WEST 321.75 FEET TO THE SOUTHEASTERLY CONTINUATION OF THAT CERTAIN CURVE DESCRIBED AS BEING CONCAVE SOUTHERLY, HAVING A RADIUS OF 328.27 FEET, IN PARCEL A OF THE DEED TO H. H. ROBERTSON COMPANY, RECORDED MARCH 3, 1967, AS INSTRUMENT NO. 940 IN BOOK D-3573 PAGE 323, OFFICIAL RECORDS OF SAID THENCE NORTHWESTERLY ALONG SAID CONTINUATION AND ALONG SAID CURVE COUNTY: THROUGH A CENTRAL ANGLE OF 22 DEGREES 59 MINUTES 46 SECONDS AN ARC DISTANCE OF 131.75 FEET TO A LINE WHICH IS PARALLEL WITH AND 450.00 FEET NORTHWESTERLY MEASURED AT RIGHT ANGLES FROM THE SOUTHEASTERLY LINE OF SAID LOT 8; THENCE ALONG SAID PARALLEL LINE SOUTH 39 DEGREES 20 MINUTES 25 SECONDS WEST 311.91 FEET TO A LINE WHICH IS PARALLEL WITH AND 338.00 FEET SOUTHWESTERLY, MEASURED AT RIGHT ANGLES, FROM THE NORTHEASTERLY LINE OF SAID LOT 8; THENCE ALONG SAID LAST MENTIONED PARALLEL LINE SOUTH 50 DEGREES 39 MINUTES 28 SECONDS EAST 450.00 FEET TO THE SOUTHEASTERLY LINE OF SAID LOT 8; THENCE ALONG SAID SOUTHEASTERLY LINE OF SAID LOT 8, NORTH 39 DEGREES 20 MINUTES 25 SECONDS EAST 338.00 FEET TO THE POINT OF BEGINNING. EXCEPT ALL MINERALS AND MINERAL RIGHTS OF EVERY KIND AND CHARACTER NOW KNOWN TO EXIST OR HEREAFTER DISCOVERED, INCLUDING WITHOUT LIMITING THE GENERALITY OF THE FOREGOING. OIL AND GAS AND RIGHTS THERETO, TOGETHER WITH THE SOLE, EXCLUSIVE AND PERPETUAL RIGHT TO EXPLORE FOR, REMOVE AND DISPOSE OF SAID MINERALS BY ANY MEANS OR METHODS SUITABLE TO THE GRANTORS, THEIR SUCCESSORS AND ASSIGNS BUT WITHOUT ENTERING UPON OR USING THE SURFACE OF THE LANDS HEREBY CONVEYED, AND IN SUCH MANNER AS NOT TO DAMAGE THE SURFACE OF SAID LANDS OR TO INTERFERE WITH THE USE THEREOF BY THE GRANTEE, ITS SUCCESSORS OR ASSIGNS AS RESERVED BY B. C. WOODWARD AND CITIZENS NATIONAL TRUST AND SAVINGS BANK OF LOS ANGELES, AS TRUSTEES UNDER WILL OF AUGUST V. HANDORF, DECEASED, IN DEED RECORDED FEBRUARY 20, 1957, IN BOOK 53698 PAGE 126, OFFICIAL RECORDS, AS INSTRUMENT NO. 1304, OFFICIAL RECORDS. APN: 8208-002-023 & 8208-002-024 PREPARED BY: ENGINEERING, INC. LAND SURVEYING & CIVIL ENGINEERING 4420 E. MIRALOMA AVENUE, SUITE "A" ANAHEIM, CA. 92807 PHONE: (714) 779-3828 FAX (714) 779-3829 DAVID R CHAPIN P.L.S. 6761 # **EXHIBIT** 'B' PREPARED BY: # ENGINEERING, INC. LAND SURVEYING & CIVIL ENGINEERING 4420 E. MIRALOMA AVENUE, SUITE "A" ANAHEIM, CA. 92807 PHONE: (714) 779-3828 FAX (714) 779-3829 P.L.S. 6761 # **ACKNOWLEDGMENT** A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document. | State of California
County ofSar | n Bernardino | | |---|---|--| | On June 12, 2015 | before me, | Edith L. Housen, Notary Public | | 72.1 | | (insert name and title of the officer) | | personally appeared | Hank Perkins | | | who proved to me on the subscribed to the with his/her/their authorized | in instrument and acknow
d capacity(ies), and that b | vidence to be the person(s) whose name(s) is/are viedged to me that he/she/they executed the same in by his/her/their signature(s) on the instrument the person(s) acted, executed the instrument. | I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct. WITNESS my hand and official seal. nature Out () House (Seal) EDITH L. HOUSEN Commission # 1979572 Notary Public - California San Bernardino County My Comm. Expires May 25, 2016 CITY COUNCIL **ITEM NO. 6.3** # CITY OF INDUSTRY P.O. Box 3366 • 15625 E. Stafford St. • City of Industry, CA 91744-0366 • (626) 333-2211 • FAX (626) 961-6795 # **MEMORANDUM** TO: Honorable Mayor and Members of the City Council FROM: John Ballas DATE: June 3, 2015 SUBJECT: Conveyance of Treated Water from the Northrup Grumman Plant Through the City of Industry Waterworks System to Rowland Water District Attached for your consideration is the Second Amended and Restated Water Supply Agreement between the City of Industry and La Puente Valley County Water District to facilitate the conveyance of treated water from 111 Hudson Avenue easterly to Azusa Avenue and into the Rowland Water District potable water system. Northrup Grumman (NG) has entered into a purchase and sale agreement with the Successor Agency to purchase the property located at 111 Hudson Avenue for the construction of a \$20M treatment facility, which will produce 1,500 gallons per minute of highly treated groundwater. In turn, NG is entering into an agreement with La Puente Water District to operate the plant, and has agreed to make certain improvements to both La Puente's and the City of Industry Waterworks (CIWS) systems to convey the treated water to Rowland Water District's system on Azusa Avenue. Rowland Water District will not only pay La Puente for delivering this treated water, but will also be securing the water rights from the main San Gabriel Basin, which enables NG to extract the ground water for treatment. La Puente is proposing to amend the Restated Water Supply Agreement as a way of compensating the City of Industry for its use of the CIWS system and additional efforts to pump water up to and over the Industry Hills property. Please see the attached Supply and Distribution Maps to illustrate how the treated water will flow to Rowland. The compensation formula is based upon the La Puente's share of the actual electrical costs incurred in pumping water to the existing above ground reservoirs at Industry Hills and for the ongoing maintenance costs for the CIWS facilities as a per acre "wheeling" fee. The exact wheeling fee has yet to be determined and will be calculated once the system is operating and adjusted annually. It will primarily pay for the ongoing maintenance of the pumps within pump station No. 1 & 2 together with any mainline maintenance and repairs. The formula is also based upon how much water is supplied by
CIWS and La Puente into each of the local pressure zones and how much is extracted by each entity. The reservoirs are a part of pressure zone 775 while the pipelines in Hudson, Nelson Ave, Glendora Ave and Temple Ave are within the 488 pressure zone. La Puente will measure the amount of water passing through each of the various interconnections between CIWS and the La Puente system at the 488 zone and also at the 775 zone. Depending on the flow rates, the cost to La Puente for the use of the CIWS will be determined. There is also a provision that if either party were to use more water from the other without replacing it within 12 months, the supplying party would receive the cost of replenishment water, production assessments, power costs and a wheeling fee. Staff, therefore, recommends that the agreement be approved for a term of 40 years. # SECOND AMENDED ### AND RESTATED ### WATER SUPPLY AGREEMENT 1. <u>Identification</u>. This Second Amended and Restated Water Supply Agreement ("Agreement") is effective as of July 1, 2015 (the "Effective Date"), and is between the LA PUENTE VALLEY COUNTY WATER DISTRICT ("District") and the CITY OF INDUSTRY ("City"). ### 2. Recitals. - 2.1 District and City own water supply systems which presently contain interconnections between the two systems. - 2.2 On June 11, 2009, District and City entered into a Restated Water Supply Agreement ("Prior Agreement") relating to the interconnections between the two water supply systems to allow for the delivery of water supplies from one system to the other for emergency purposes, and another Water Supply Agreement relating to the provision of water service to certain District customers located on Holguin Place in the City of La Puente (the "Holguin Agreement"). - 2.3 On October 14, 2010, District and City entered into an Amended and Restated Water Supply Agreement (the "Restated Agreement") wherein the parties agreed that all interconnections between them be operated on an as-needed basis and not just for emergency purposes, certain problems concerning pressure and flow in the District's service area known as Zone Three were addressed, and the ownership, operation, use and maintenance obligations of the parties with respect to each interconnection was summarized and set forth, thereby incorporating and superseding the Prior Agreement and Holguin Agreement. - 2.4 The District has entered into an agreement with Northrup Grumman, dated October 8, 2014, to receive additional water supplies into its system from the proposed Puente Valley Operable Unit Intermediate Zone Project ("PVOU IZ"). In order to facilitate such additional water, the District plans to construct certain improvements to the City's water system and establish additional water supply interconnections with it. The additional water supply, to be supplied to Rowland Water District ("RWD") by an interconnection between the District and RWD, will provide increased water supply reliability to RWD customers located within the City. Additionally, the PVOU IZ project will improve the water quality generally within the basin, from which the City extracts its water. - 2.5 By this Agreement, the District and City desire to set forth the duties and responsibilities of the parties in relation to the planned improvements, additional interconnections, and water supply described in Paragraph 2.4, above, confirm the identification and location of all the interconnections between the District and City, and set forth the terms of use, ownership, operation, and maintenance obligations with respect to said interconnections. - 2.6 This Agreement incorporates, supersedes, and terminates the Restated Agreement. # 3. <u>Agreements</u>. It is agreed as follows: - 3.1 The District plans to construct, or cause to be constructed, a 12-inch metered connection between its system and the City's system located at 111 Hudson Avenue, City of Industry, which location is identified as location 2 on Exhibit A. Said construction shall be in accordance with the District's plans and specifications and at the District's sole expense, - 3.2 The District plans to construct, or cause to be constructed, a metered connection located between its system and the City's System at the Industry Hills Pump Station No. 1 site located at 16200 Temple Avenue, City of Industry, which location is identified as location 3A on Exhibit A. Said construction shall be in accordance with the District's plans and specifications and at the District's sole expense. - 3.3 The District plans to construct, or cause to be constructed, pump improvements at the Industry Hills Pump Station No. 1 and Pump Station No. 2, located at 16200 Temple Avenue, City of Industry, which location is identified as location 3 on Exhibit A, to efficiently pump PVOU IZ water. Said construction shall be subject to approval by the City, in accordance with the District's plans and specifications, and be at the District's sole expense. Once completed, these improvements will become the property of the City. - 3.4 The District plans to construct, or cause to be constructed, improvements to the Industry Hills Pump Station No. 3 located on Industry Hills Parkway, City of Industry, which location is identified as location 7 on Exhibit A. These improvements will include a chloramination facility within the existing pump station, a flow control valve, and an emergency water supply pump to serve the Industry Hills service area. Said construction shall be subject to approval by the City, in accordance with the District's plans and specifications, and be at the District's sole expense. - 3.5 The improvements set forth in Paragraphs 3.1 through 3.4, above, are contingent upon the completion of the PVOU IZ. Should water supplies from the PVOU IZ not be made available by July 1, 2020, said improvements shall not be constructed, and Paragraphs 3.1 through 3.4 shall be stricken from this Agreement. The District shall promptly notify the City in this event, and an amendment to this Agreement shall be prepared. The remainder of this Agreement shall remain in full force and effect. - 3.6 All interconnections between the water systems of the District and City, including the interconnections planned in Paragraphs 3.1 and 3.2, above, are set forth in Exhibit A attached hereto which identifies the location, type, flow direction and hydraulic zone of the various interconnection facilities. - 3.7 The maintenance and repair of the interconnections shall be performed by the District and the cost of such maintenance and repairs shall be borne by the party receiving water from that particular interconnection (i.e. flow direction). The maintenance requirements for the interconnections are set forth in Exhibit **B** attached hereto. - 3.8 The interconnections shall be operated on an as-needed basis by the District to ensure efficient use and management of both water systems. - 3.9 All water flows through the interconnections shall be metered and monitored by the District. The District shall generate and prepare reports of the meter readings and provide them to City within fifteen days after the end of each quarter, commencing October 15, 2015. Said reports shall clearly indicate the amount of water delivered by each party at each hydraulic zone. - 3.10 The party receiving water shall compensate the party supplying water as follows: - A. Delivering an equivalent quantity of water at the same hydraulic zone within 12 months of receipt of the quarterly meter reading in which the party supplying water made its delivery. When a party delivers water at a lower hydraulic zone but receives its delivery of water back at a higher hydraulic zone, that party shall also pay a wheeling charge (as established by the parties pursuant to Section 3.11, below) and the actual incremental costs of electrical power. A sample calculation of the wheeling charge and incremental electrical power costs is set forth in Exhibit C attached hereto. - B. If the water exchange as described in 3.10 (A) cannot be accomplished, whether in part or in full, the receiving party shall pay the supplying party for the amount per acre-foot of water delivered but not replaced by exchange at the dollar amount per acre-foot of water that is equal to the full cost of replenishment water at the then applicable published rate set by the Upper San Gabriel Municipal Water District, including all groundwater production assessment costs, electrical power, and the wheeling charge as set forth in Exhibit C, within 60 days after expiration of the 12-month period following receipt of the quarterly meter reading in which the delivery took place. - 3.11 The wheeling charge applicable in Section 3.10 is assessed to offset the cost of water system maintenance (i.e. repair and maintenance of booster pumps, waterlines, and reservoirs) and shall be established by subsequent agreement of the parties retroactive to the Effective Date. Once established, it shall be attached to this Agreement by amendment, and incorporated by reference as part of the Agreement. The wheeling charge shall be subject to verification annually from the Effective Date, and may be modified by agreement of the parties. If necessary, the parties shall meet and confer to verify the appropriate wheeling charge. In no event, however, shall the wheeling charge increase from year to year by more than three percent (3%). - 3.12 Neither party guarantees the pressure, flow, nor quality of the water delivered or exchanged. - 3.13 This Agreement shall not constitute a transfer of any water or capacity rights other than the contract right under this Agreement. - 3.14 The term of this Agreement shall be forty (40) years from the Effective Date, and after such time shall continue until terminated by either party upon sixty (60) days written notice. - 3.15 All notices shall be given by personal delivery or certified mail, return receipt requested, addressed as follows: City of Industry 15625 East
Stafford Street City of Industry, California 91749 Attn: City Manager "City" CITY OF INDUSTRY "District" La Puente Valley County Water District 112 North First Street La Puente, California 91744-4710 Attn: General Manager LA PUENTE VALLEY COUNTY Executed by duly authorized Officers of the District and City. | | WATER DISTRICT | |------|-----------------------------| | By: | By: | | Its: | John P. Escalera, President | | APPROVED AS TO FORM: | APPROVED AS TO FORM: | |----------------------|---| | | LAGERLOF, SENECAL,
GOSNEY & KRUSE, LLP | | By: | By: | | City Attorney | Roland Trinh District General Counsel | # Interconnections Between LPVCWD and CIWS (Maintenance Responsibilities) | No. | Connection Location | Flow Direction | Equipment Required to Provide Water for Flow Direction | Regular Maintenance | Payee | |------|--|----------------|--|---|--------| | INO. | Connection Education | TIOW DIRECTION | | _ | гаусс | | *1 | Valley Blvd & Proctor Avenue | CIWS-LPVCWD | Meter, Pressure Regulating Valve, Isolation Valves, Piping | Meter Testing,
Valve Maintenance / Repair | CIWS | | *1 | Valley Blvd & Proctor Avenue | LPVCWD - CIWS | Meter, Check Valve, Valves, Piping | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 2 | (Proposed New) Hudson Avenue -
Just East of Stafford Street | BI-DIRECTIONAL | Meter, Pressure Regulating Valve, Valves, Piping | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 3 | Industry Hills Pump Station #1 | LPVCWD - CIWS | Meters, 3-Booster Pumps, Electrical Equipment, Piping | Meter Testing, Pump
Maintenance, Valve
Maintenance / Repair | CIWS | | 3A | (Proposed Upgrade)
Industry Hills Pump Station #1 | BI-DIRECTIONAL | Meter, Pressure Regulating Valve, Valves, Piping | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 4 | Industry Hills - San Jose Avenue
East of Holguin Place | CIWS-LPVCWD | Meter, Pressure Regulating Valve, Valves, Piping | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 5 | Industry Hills - NE Corner of San
Jose Ave. and Holguin Place | CIWS-LPVCWD | Meter, Pressure Regulating Valve, Valves, Piping | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 6 | Industry Hills Reservoir Site | BI-DIRECTIONAL | Meter, Check Valve, Valves, Piping, Booster
Pumps | Meter Testing,
Valve Maintenance / Repair | LPVCWD | | 7 | Industry Hills Pump Station #3 | LPVCWD - CIWS | Meters, Booster Pump, Electrical Equipment, Piping | Meter Testing, Pump
Maintenance, Valve Operation | CIWS | | 7A | (Proposed Upgrade) Industry Hills Pump Station #3 | CIWS-LPVCWD | Meter, Pressure Regulating Valve, Valves, Piping, Chemical Feed System | Meter Testing,
Valve Maintenance / Repair,
Chemical Feed System
Maintenance / Repair | LPVCWD | ^{*} Interconnection provides bi-directional flow of water; the maintenance requirements are based on the facilities that provide the flow of water in a specific direction (i.e., CIWS to LPVCWD or LPVCWD to CIWS) ### **CIWS-LPVCWD WATER EXCHANGE SUMMARY** ### **EXAMPLE** | | Factoring the Cost of Water Delivery for each Hydraulic Zone | | | | | | | | | | | | | |---|--|--|---|--------------------|------------------------------------|--|--|--|--|--|--|--|--| | Zone | Replacement Water | "Wh
Replacement Water Production Assessments Power Cost (As Descr | | | | | | | | | | | | | Cost Required to
Convey Water to
Zone 488 | Upper San Gabriel Valley Municipal Water District Current Rate of Replenishment Water = \$673/AF | Watermaster Assessments
(Admin., In-Lieu, Water Resource Development)
= \$15 + \$10 + \$20 = \$45/AF | Cost to lift water from well source to Zone 448 = \$67/AF | \$20 | \$673 + \$45 + \$67 + \$20 = \$805 | | | | | | | | | | Cost Required to
Convey Water to
Zone 775 | Upper San Gabriel Valley Municipal Water District Current Rate of Replenishment Water = \$673/AF | Watermaster Assessments
(Admin., In-Lieu, Water Resource Development)
= \$15 + \$10 + \$20 = \$45/AF | Cost to lift water from well source to Zone 448 = \$67/AF + cost to lift water from 448 to the 775 (e.g pump station no. 1 = \$41/AF & no. 2 = \$43) = \$151/AF | \$20 + \$20 = \$40 | \$805 + \$84 + \$20 = \$909 | | | | | | | | | | Cost Difference
Between Zones | \$0.00 | \$0.00 | \$84.00 | \$20.00 | \$104 | | | | | | | | | ### **Deliveries from LPVCW to CIWS** | | Zone 488 Deliveries | | | | | | | | Zone 775 Deliveries | | | | | | | Combined | | |--------------|---------------------|--------------|--------------|---------------|----------------|---------------------------|--|--------------|---------------------|--------------|--------------|------------------|-------------------|------------------------------|---|----------|---------------| | QTR | Connection 1 | Connection 2 | Connection 3 | Connection 3A | Zone 488 Total | Zone 488
Running Total | Zone 488 Previous Year As described in Section 3.10(A) | Connection 4 | Connection 5 | Connection 6 | Connection 7 | Connection
7A | Zone 775
Total | Zone 775
Running
Total | Zone 775
Previous Year
As described in
Section 3.10(A) | Total | Running Total | | Prior Period | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 14-15 QTR 1 | 5 | 300 | 0 | 200 | 505 | 505 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 505 | 505 | | 14-15 QTR 2 | 0 | 300 | 0 | 200 | 500 | 1005 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 500 | 1005 | | 14-15 QTR 3 | 4 | 300 | 0 | 200 | 504 | 1509 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 504 | 1509 | | 14-15 QTR 4 | 0 | 300 | 0 | 200 | 500 | 2009 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 500 | 2009 | | 15-16 QTR 1 | 5 | 300 | 0 | 200 | 505 | 2514 | 505 | | | 20 | 0 | 0 | 20 | 20 | 0 | 525 | 2534 | | 15-16 QTR 2 | 8 | 300 | 0 | 200 | 508 | 3022 | 500 | | | 20 | 0 | 0 | 20 | 40 | 0 | 528 | 3062 | | 15-16 QTR 3 | 0 | 300 | 0 | 200 | 500 | 3522 | 504 | | | 20 | 0 | 0 | 20 | 60 | 0 | 520 | 3582 | | 15-16 QTR 4 | 0 | 300 | 0 | 200 | 500 | 4022 | 500 | | | 20 | 0 | 0 | 20 | 80 | 0 | 520 | 4102 | #### Deliveries from CIWS to LPVCWD | | | | | Zone 488 Deliv | veries | | | Zone 775 Deliveries | | | | | | Combined | | | | |--------------|--------------|--------------|--------------|----------------|----------------|---------------------------|--|---------------------|--------------|--------------|--------------|------------------|-------------------|------------------------------|---|-------|---------------| | QTR | Connection 1 | Connection 2 | Connection 3 | Connection 3A | Zone 488 Total | Zone 488
Running Total | Zone 488 Previous Year (As described in Section 3.10(A)) | Connection 4 | Connection 5 | Connection 6 | Connection 7 | Connection
7A | Zone 775
Total | Zone 775
Running
Total | Zone 488
Previous Year
(As described in
Section 3.10(A)) | Total | Running Total | | Prior Period | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 14-15 QTR 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 520 | 0 | 520 | 520 | | 14-15 QTR 2 | 0 | 0 | | 0 | 0 | 0 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 1040 | 0 | 520 | 1040 | | 14-15 QTR 3 | 0 | 0 | | 0 | 0 | 0 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 1560 | 0 | 520 | 1560 | | 14-15 QTR 4 | 0 | 0 | | 0 | 0 | 0 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 2080 | 0 | 520 | 2080 | | 15-16 QTR 1 | 5 | 0 | | 0 | 5 | 5 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 2600 | 520 | 525 | 2605 | | 15-16 QTR 2 | 0 | 0 | | 0 | 0 | 5 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 3120 | 520 | 520 | 3125 | | 15-16 QTR 3 | 4 | 0 | | 0 | 4 | 9 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 3640 | 520 | 524 | 3649 | | 15-16 QTR 4 | 0 | 0 | | 0 | 0 | 9 | 0 | 2 | 3 | 15 | 0 | 500 | 520 | 4160 | 520 | 520 | 4169 | ### **Delivery Summary** | | | | | | Α | В | | | | С | D | E | |--------------|----------------------|-------------------------|------------|--------------------------|-----------------------------|--|---|--------------------------|-----------------------------|--|--|------------------------| | Quarter | LPVCWD Total to CIWS | CIWS Total to
LPVCWD | Difference | LPVCWD to
CIWS in 488 | CIWS to
LPVCWD
in 488 | Amount CIWS
unable to
exchange in
488 (per
provision 3.10) | CIWS owes \$ to
LPVCWD for 448
Deliveries | LPVCWD to
CIWS in 775 | CIWS to
LPVCWD in
775 | Amount
LPVCWD
unable to
exchange in
775
(per provision
3.10) | LPVCWD owes \$ to CIWS for
775 Deliveries | LPVCWD Owes \$ to CIWS | | Prior Period | 0 | 0 | 0 | 0 | 0 | 0 | \$0 | 0 | 0 | 0 | \$0 | \$0 | | 14-15 QTR 1 | 505 | 520 | 15 | 505 | 0 | 0 | \$0 | 0 | 520 | 0 | \$0 | \$0 | | 14-15 QTR 2 | 500 | 520 | 20 | 500 | 0 | 0 | \$0 | 0 | 520 | 0 | \$0 | \$0 | | 14-15 QTR 3 | 504 | 520 | 16 | 504 | 0 | 0 | \$0 | 0 | 520 | 0 | \$0 | \$0 | | 14-15 QTR 4 | 500 | 520 | 20 | 500 | 0 | 0 | \$0 | 0 | 520 | 0 | \$0 | \$0 | | 15-16 QTR 1 | 525 | 525 | 0 | 505 | 5 | 500
| \$402,500 | 20 | 520 | 500 | \$454,500 | \$52,000 | | 15-16 QTR 2 | 528 | 520 | -8 | 508 | 0 | 500 | \$402,500 | 20 | 520 | 500 | \$454,500 | \$52,000 | | 15-16 QTR 3 | 520 | 524 | 4 | 500 | 4 | 500 | \$402,500 | 20 | 520 | 500 | \$454,500 | \$52,000 | | 15-16 QTR 4 | 520 | 520 | 0 | 500 | 0 | 500 | \$402,500 | 20 | 520 | 500 | \$454,500 | \$52,000 | #### Notes Column A represents water delivered in Zone 488 that was not redilivered within 12 months. Column B represents the undelivered amout multiplied by the agreed the cost to convery water to the 448 zone as detailed in example table above. Column C represents water delivered in Zone 775 that was not redilivered within 12 months. Column D represents the undelivered amout multiplied by the agreed the cost to convery water to the 775 zone as detailed in example table above. Column E represents the difference between what each party owes. In this case LPVCWD owes CIWS the amount shown.